Support of closed orbit relative matrix coefficients

Jerrod M Smith

Department of Mathematics & Statistics University of Calgary Calgary, AB, Canada Email: jerrod.smith@ucalgary.ca

October 11, 2018

Outline

- p-adic symmetric spaces and distinguished representations
- equivariant linear forms on Jacquet modules
- **6** characterizing (H, χ, λ) -relative supercuspidality
- **4** an (H, χ) -relative subrepresentation theorem
- support of closed orbit relative matrix coefficients: representations that are not relatively supercuspidal

Remark

- ► The results in items 2-4 generalize the work of Kato and Takano (2008) and have recently been obtained independently by Takeda.
- ▶ Delorme (2010) obtained similar results to those in 2 and 3 following the methods of Lagier (2008)

Notation

- F a nonarchimedean local field with odd residual characteristic
- ▶ **G** connected reductive *F*-group; with *F*-points *G*
- \triangleright θ an F-rational involution
- ightharpoonup **H** = **G**^θ θ-fixed points; *F*-points *H*
- ightharpoonup X = G/H is a *p*-adic symmetric space

All representations are smooth and on complex vector spaces.

Definition

Let χ be a quasi-character of H. A representation (π, V) of G is (H, χ) -distinguished if there is a nonzero element λ in $\operatorname{Hom}_H(\pi, \chi)$.

- ▶ If $\chi = 1$, then we say that π is H-distinguished
- ▶ If π has central character ω , then π is an ω -representation
- ▶ If π is an (H, χ) -distinguished ω -representation, then $\chi|_{H \cap Z_G} = \omega$

Relative matrix coefficients

 (π, V) an (H, χ) -distinguished ω -representation, fix $\lambda \neq 0 \in \mathsf{Hom}_H(\pi, \chi)$

 \lor $\forall v \in V$, define the λ -relative matrix coefficient $\varphi_{\lambda,v}: G \to \mathbb{C}$ by

$$\varphi_{\lambda,\nu}(g) = \langle \lambda, \pi(g^{-1})\nu \rangle$$

 \blacktriangleright π smooth ω -rep $\Rightarrow \varphi_{\lambda,\nu} \in C^{\infty}_{\omega}(G) \subset C^{\infty}(G)$, where

$$C_{\omega}^{\infty}(G) = \{ f \in C^{\infty}(G) : f(zg) = \omega(z^{-1})f(g), \forall z \in Z_G, g \in G \}$$

► The map $v \mapsto \varphi_{\lambda,v}$ intertwines (π, V) and the left-regular representation of G on

$$C^{\infty}(G, H, \chi) = \{ f \in C^{\infty}(G) : f(gh) = \chi(h^{-1})f(g) \} \cong \operatorname{Ind}_{H}^{G} \chi$$

▶ since π is an ω -rep, $\varphi_{\lambda,\nu} \in C^{\infty}_{\omega}(G,H,\chi) = C^{\infty}(G,H,\chi) \cap C^{\infty}_{\omega}(G)$

Support modulo Z_GH

▶ Observe: $\forall g \in G, z \in Z_G, h \in H$

$$\varphi_{\lambda,\nu}(\mathsf{gzh}) = \langle \lambda, \pi(\mathsf{h}^{-1}\mathsf{z}^{-1}\mathsf{g}^{-1}) \mathsf{v} \rangle = \chi(\mathsf{h}^{-1})\omega(\mathsf{z}^{-1})\varphi_{\lambda,\nu}(\mathsf{g})$$

and it makes sense to consider the support of $\varphi_{\lambda,\nu}$ modulo Z_GH .

▶ Define $C_{\omega,0}^{\infty}(G,H,\chi)$ to be the space

$$\{f \in C^{\infty}_{\omega}(G, H, \chi) : \mathsf{Supp}(f) \text{ has compact image in } G/Z_GH\}$$

Definition

The (H, χ) -distinguished ω -representation (π, V) is said to be:

- **1** (H,χ,λ) -relatively supercuspidal iff $\varphi_{\lambda,\nu}\in C^\infty_{\omega,0}(G,H,\chi)$, $\forall \nu\in V$
- **2** (H,χ) -relatively supercuspidal if and only if π is (H,χ,λ) -relatively supercuspidal for every $\lambda \in \operatorname{Hom}_H(\pi,\chi)$

If $\chi = 1$ then we drop it from the notation

Invariant forms on Jacquet modules $(\chi = 1_H)$

A parabolic subgroup P of G is θ -split if $\theta(P)$ is opposite to P If P is θ -split, then $M=P\cap\theta(P)$ is a θ -stable Levi factor of P

Theorem (Kato-Takano, Lagier; 2008)

Let (π,V) be an admissible H-distinguished representation of G. Let $\lambda \in \operatorname{Hom}_H(\pi,1)$ be nonzero. Let P=MN be a θ -split parabolic subgroup of G with unipotent radical N and θ -stable Levi $M=P\cap \theta(P)$. There exists a linear functional $\lambda_N:V_N\to \mathbb{C}$, canonically associated to λ such that

- **1** $\lambda_N \in \mathsf{Hom}_{M^{\theta}}(\pi_N, 1)$ is M^{θ} -invariant
- **2** The map $\operatorname{Hom}_H(\pi,1) \to \operatorname{Hom}_{M^{\theta}}(\pi_N,1)$ given by $\lambda \mapsto \lambda_N$ is linear
- **(3)** the map $\lambda \mapsto \lambda_N$ is compatible with the transitivity of Jacquet restriction

Remark

 λ_N is constructed from λ via Casselman's Canonical Lifting

Characterizing (H, λ) -relatively supercuspidal reps

Theorem (Kato-Takano, Lagier)

Let (π,V) be an admissible H-distinguished representation of G. Let $\lambda \in \operatorname{Hom}_H(\pi,1)$ be nonzero. Then (π,V) is (H,λ) -relatively supercuspidal if and only if $\lambda_N=0$ for every proper θ -split parabolic subgroup P=MN of G

Theorem (Kato-Takano)

Let (π, V) be an irreducible admissible H-distinguished representation of G. There exists a θ -split parabolic subgroup P = MN of G and an irreducible M^{θ} -relatively supercuspidal representation (ρ, W) of M such that π is equivalent to a subrepresentation of the parabolically induced representation $\iota_{F}^{G}\rho$.

Goal

Generalize the work of Kato–Takano, Lagier to include (H, χ) -distinguished representations when χ is nontrivial

Equivariant linear forms on Jacquet modules (any χ)

Theorem (Delorme 2010, S., Takeda)

Let (π, V) be an admissible (H, χ) -distinguished representation of G. Let $\lambda \in \operatorname{Hom}_H(\pi, \chi)$ be nonzero. Let P = MN be a θ -split parabolic subgroup of G. There exists a linear functional $\lambda_{N,\chi}: V_N \to \mathbb{C}$, canonically associated to λ such that

- $\bullet \lambda_{N,\chi} \in \mathsf{Hom}_{M^{\theta}}(\pi_N, \chi|_{M^{\theta}})$
- ② The map $\operatorname{Hom}_H(\pi,\chi) \to \operatorname{Hom}_{M^{\theta}}(\pi_N,\chi|_{M^{\theta}})$ given by $\lambda \mapsto \lambda_{N,\chi}$ is linear
- **3** If $\chi = 1$, then $\lambda_{N,1} = \lambda_N$ is the form defined by Kato–Takano, Lagier
- **4** $\lambda \mapsto \lambda_{N,\chi}$ is compatible with the transitivity of Jacquet restriction

Remark

- $\triangleright \lambda_{N,\gamma}$ is defined in exactly the same way as λ_N
- Proof: chase χ through the arguments of Kato–Takano, Lagier and use that χ is smooth to get inside ker χ when taking Canonical Lifts

Characterizing (H, χ, λ) -relatively supercuspidal reps

Theorem (Delorme 2010, S., Takeda)

Let (π, V) be an admissible (H, χ) -distinguished representation of G. Let $\lambda \in \operatorname{Hom}_H(\pi, \chi)$ be nonzero. Then (π, V) is (H, χ, λ) -relatively supercuspidal if and only if $\lambda_{N,\chi} = 0$ for every proper θ -split parabolic subgroup P = MN of G.

Theorem (S., Takeda)

Let (π, V) be an irreducible admissible (H, χ) -distinguished representation of G. There exists a θ -split parabolic subgroup P = MN of G and an irreducible $(M^{\theta}, \chi|_{M^{\theta}})$ -relatively supercuspidal representation (ρ, W) of M such that π is equivalent to a subrepresentation of the parabolically induced representation $\iota_P^G \rho$.

Remark

Takeda has also recently proved a subrepresentation theorem for H-relatively tempered representations

Representations that are **not** relatively supercuspidal

- ightharpoonup Q = LU a θ-stable parabolic subgroup with θ-stable Levi L
- lacksquare μ a positive quasi-invariant measure on $Q^{ heta} ackslash H$
- ightharpoonup ho a smooth representation of L and let $\pi=\iota_Q^G
 ho$

Lemma (Closed orbit equivariant forms)

The map $\lambda \mapsto \lambda^G$, where

$$\langle \lambda^{\mathsf{G}}, \phi \rangle = \int_{\mathcal{Q}^{\theta} \setminus \mathcal{H}} \langle \lambda, \chi(h)^{-1} \phi(h) \rangle \ d\mu(h)$$

for $\phi \in V_{\pi}$, is an injection of $\operatorname{Hom}_{L^{\theta}}(\delta_{Q}^{1/2}\rho, \delta_{Q^{\theta}}\chi|_{L^{\theta}})$ into $\operatorname{Hom}_{H}(\pi, \chi)$.

▶ If $\delta_Q^{1/2}|_{L^{\theta}} = \delta_{Q^{\theta}}$, then $\operatorname{Hom}_{L^{\theta}}(\rho, \chi|_{L^{\theta}}) \hookrightarrow \operatorname{Hom}_{H}(\pi, \chi)$.

Question (Motivation)

Can we determine when $(\lambda^G)_{N,\chi}$ is nonzero by using the properties of λ ?

A result on the support of functions on G/Z_GH

- Assume that $\chi = 1$ is the trivial character of H
- ightharpoonup Q = LU a θ-stable parabolic subgroup with θ-stable Levi L
- ▶ ρ an admissible (L^{θ}, χ') -distinguished representation of L, where $\chi' = \delta_{Q^{\theta}} \delta_Q^{-1/2}|_{L^{\theta}}$
- ▶ By assumption, \exists nonzero $\lambda \in \mathsf{Hom}_{L^{\theta}}(\delta_Q^{1/2}\rho, \delta_{Q^{\theta}})$
- ▶ Define $\pi = \iota_Q^G \rho$ and build $\lambda^G \in \mathsf{Hom}_H(\pi, 1)$ from λ

Theorem (S.)

If π is (H, λ^G) -relatively supercuspidal, then ρ is $(L^{\theta}, \chi', \lambda)$ -relatively supercuspidal.

Corollary

If $(\lambda^G)_N = 0$ for all proper θ -split parabolic subgroup P = MN of G, then $\lambda_{N',\chi'} = 0$ for all proper θ -split parabolic subgroups P' = M'N' of L.

A sketch of the proof

- ▶ Prove: If ρ is not $(L^{\theta}, \chi', \lambda)$ -rsc, then $\pi = \iota_Q^{\mathsf{G}} \rho$ is not $(H, \lambda^{\mathsf{G}})$ -rsc
- Consider support of matrix coefficients modulo S_GH
- ightharpoonup $\exists v \in V_{
 ho}$ such that $\varphi_{\lambda,v}$ has non-compact support modulo $S_L L^{\theta}$
- ▶ Delorme–Sécherre and Benoist–Oh: Relative Cartan Decomposition: $L = \mathfrak{C}_L S^+ \mathfrak{X}_L^{-1} L^\theta$, $\mathfrak{X}_L \subset (\mathbf{L}^\theta C_L(S))(F)$, $S \max(\theta, F)$ -split torus of L
- ▶ WLOG: $\varphi_{\lambda,\nu}$ non-compactly support on S/S_L
- Let K < G be compact open with Iwahori factorization wrt Q
- ▶ Define $f_v \in V_{\pi}$ to be zero off of $QK = Q(U^{\text{op}} \cap K)$ and such that $f_v(\bar{u}) = v$ for $\bar{u} \in U^{\text{op}} \cap K$

$$\varphi_{\lambda^G,f_{\boldsymbol{\nu}}}(\ell) = \int_{Q^\theta \backslash H} \langle \lambda, \delta_Q^{1/2}(\ell^{-1}) \rho(\ell^{-1}) f_{\boldsymbol{\nu}}(\ell h \ell^{-1}) \rangle \ d\mu(h) = c_\ell \cdot \delta_Q^{1/2}(\ell^{-1}) \varphi_{\lambda,\boldsymbol{\nu}}(\ell)$$

where
$$c_\ell = \int_{Q^\theta \setminus \{\ell^{-1}K\ell\}^\theta} \ d\mu(h) = \mu(Q^\theta \setminus (U^\mathsf{op} \cap \ell^{-1}K\ell)^\theta) > 0$$

Remark

We can prove the analogous result for nontrivial χ if we assume that $\chi: H \to \mathbb{R}_{>0}$ is positive valued

Theorem (S.)

Assume that $\chi: H \to \mathbb{R}_{>0}$ is positive valued. Assume that ρ is (L^{θ}, χ') -distinguished, where $\chi' = \delta_{Q^{\theta}} \delta_{Q}^{-1/2} \chi|_{L^{\theta}}$. If π is (H, χ, λ^{G}) -relatively supercuspidal, then ρ is $(L^{\theta}, \chi', \lambda)$ -relatively supercuspidal.

Question (The open orbit)

If P=MN is θ -split, τ is M^{θ} -distinguished, and the H-invariant form λ' on $\pi'=\iota_P^G\tau$ arises via the open orbit (i.e., via Blanc–Delorme) what can we say about $\lambda'_{N'}$ for θ -split P'=M'N'?

- ► This problem was addressed by J. Carmona and P. Delorme (Trans. Amer. Math. Soc. **366** (2014), no. 10, 5323–5377.)
- ▶ If τ is relatively supercuspidal and $P' \cap M \subsetneq M$, then $\lambda'_{N'} = 0$.

Thank you!