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During the first two weeks in July 2011, at the Mathematisches Forschungsinstitut Oberwolfach
(MFO), a group consisting of Pramod Achar, Clifton Cunningham, Masoud Kamgarpour and Hadi
Salmasian worked on a geometric approach to the local Langlands correspondence as it pertains to
algebraic groups over p-adic fields. The same research group, with one addition, David Roe, met for
one week in May 2012 at the Banff International Research Station (BIRS) to continue this project.
This report describes the work done by this group at both the MFO in July 2011 and at BIRS in
May 2012.

1. Introduction

We seek to replace the basic ingredients of both sides of the local Langlands correspondence
with geometric avatars (in this case, perverse sheaves) and then bring techniques from algebraic
geometry to bear on the correspondence itself. We hope, in the process, to see how to make local
Langlands correspondence more categorical. The main results we have established thus far are
explained (but not proved) in this report, in sections corresponding to the four points below.

Throughout this report, F denotes a local non-Archimedean field with residue field Fq and F̄
denotes a fixed separable closure of F . Let p be the characteristic of Fq. Although we assume
nothing regarding the characteristic of F , we are particularly interested in the case when F has
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characteristic 0. We write Γ for Gal(F̄ /F ) and WF (resp. W ′F ) for the Weil (resp. Weil-Deligne)
group of F . Let G be a connected reductive group over F , and T a torus over F .

(§ 2) We have found a category of perverse sheaves whose simple objects naturally correspond
to complete Langlands parameters for G(F ); we refer to the simple objects in this category
as geometric parameters for G. See Section 2.

(§ 3) We have sketched an argument that the category of geometric parameters is Koszul. See
Section 3.

(§ 4) When T is an unramified induced torus, we have found a category of perverse sheaves whose
simple objects naturally correspond to characters of admissible representations of T (F ); we
refer to simple objects in this category as geometric characters for T . See Section 4.

(§ 5) We have found a function from geometric characters for F× to geometric parameters for
F×; this function is a bijection (on isomorphism classes) by class field theory. See Section 5

Moreover, in related work with Clifton Cunningham, Aaron Christie and Anne-Marie Aubert during
June-July 2012, we have also found how to geometrize certain cusp forms appearing in the part of
the local Langlands correspondence proved by Lusztig. However, no details of that progress will
appear in this report.

Contents

1. Introduction 1
1.1. The Local Langlands Correspondence 3
2. Geometric parameters 3
2.1. Cocycles 3
2.2. Langlands parameters with trivial monodromy 4
2.3. The geometric parameter ind-variety 5
2.4. Vogan varieties and a stratification of the geometric parameter ind-variety 5
2.5. Geometric parameters 6
3. Geometric parameters and Koszul duality 7
3.1. Overview of Koszul duality 7
3.2. Geometric Koszul duality 8
3.3. Aim of the project 8
3.4. Outline for the proposed research project 8
4. Geometric characters for p-adic tori 9
4.1. Classical geometrization 9
4.2. Geometric characters for commutative groups 10
4.3. Comparison with character sheaves 10
4.4. Greenberg of Neron 11
4.5. Geometrization of characters of bounded depth 11
4.6. Admissible geometric characters 11
5. Geometric reciprocity 12
5.1. Geometric parameters for Gm,F 12
5.2. Geometric characters for Gm,F 12
5.3. Geometric reciprocity for non-Archimedean local fields 13
References 13



REPORT TO OBERWORLFACH ON RESEARCH IN PAIRS, 4–15 JULY 2011 3

1.1. The Local Langlands Correspondence. In order to give some context for our work, we
give a brief description of the current status of the the local Langlands correspondence. A complete
Langlands parameter for G is a pair (φ, ε), where φ : W ′F → LG is an admissible L-homomorphism

and ε is an irreducible representation of the finite group Sφ :=ZǦ(φ)/ZǦ(φ)◦Z(Ǧ)WF . The local
Langlands correspondence promises a bijection between complete parameters and characters Θπ of
admissible irreducible complex representations π of G(F ). The bijection Θπ ↔ (φ, ε) must satisfy
certain natural conditions, notably compatibility with the principle of functoriality and local class
field theory.

The local Langlands correspondence has been proved for certain families of groups, including
general linear (Harris-Taylor and Henniart), symplectic and odd-orthogonal groups (Arthur, build-
ing on recent work by Ngo and forthcoming work by Waldspurger). A slightly weaker statement is
known for even-orthogonal groups (Arthur) and the proof for some other classes, including unitary
groups, is currently under construction following Arthur’s ideas. Besides these, the local Lang-
lands correspondence has also been proved for a few low-rank groups, such as the rank-2 group of
symplectic similitudes (Gan-Takeda). From a completely different perspective, the local Langlands
correspondence is also fairly well understood for certain families of representations of quasi-split
groups (recent work by Debacker, Reeder, Gross, and Yu), including some (but not all) depth-zero
supercuspidal representations. From a different perspective again, the local Langlands correspond-
ence was proved more than 15 years ago by Lusztig for cuspidal unipotent representations of con-
nected algebraic groups over non-Archimedean local fields. The general case of the local Langlands
correspondence remains open.

2. Geometric parameters

In this section we explain how to geometrize Langlands parameters of p-adic groups. There is
considerable overlap between the ideas presented here and those appearing in [14] as they pertain
to p-adic fields; a discussion of this overlap can be found at the end of Section 2.

Let G be a connected, reductive linear algebraic group over F ; for simplicity, we assume here that
G is also quasi-split (so all L-parameters are admissible L-parameters). Write FG for the splitting
field for G in F̄ and ΓG for the Galois group Gal(FG/F ). We use the finite model for the Langlands
group: LG = Ǧ o ΓG is a quasisplit reductive linear algebraic group over Q̄` (or C, according to
taste).

2.1. Cocycles. Let IF be the inertia group for F ; thus, IF = Gal(F̄ /F nr), where F nr is the
maximal unramified extension of F in F̄ . We being by explaining how to view Z1(IF , Ǧ) (cocycles
continuous for the discrete topology on Ǧ) as an ind-variety. For every finite extension F ′ of FG,
set IF ′/F = Gal(F ′ · F nr/F nr) and let IF ′/F → ΓG be the composition

IF ′/F = Gal(F ′ · F nr/F nr) ∼= Gal(F ′/F ′ ∩ F nr) ↪→ Gal(F ′/F ) � Gal(FG/F ) = ΓG.

The finite group ΓG acts algebraically on Ǧ in the sense that, for every γ ∈ ΓG, the function
γ : g 7→ γg is a morphism of algebraic groups. It follows that we can interpret Z1(IF ′/F , Ǧ) as an

algebraic variety; indeed, it is a closed subvariety of the product of |IF ′/F |-copies of Ǧ:

ZF ′ :=

z = (z(σ))σ∈IF ′/F ∈
∏

σ∈IF ′/F

Ǧ | z(σσ′) = z(σ) σz(σ′), ∀σ, σ′ ∈ IF ′/F

 .
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It is clear that there is a canonical bijection between the Q̄`-rational points on ZF ′ and the set
Z1(IF ′/F , Ǧ). If F ′′ is a finite extension of F ′, itself a finite extension of FG, then restriction
defines a morphism of algebraic varieties ZF ′ → ZF ′′ . With this in mind, it is easy to see how to
view Z1(IF , Ǧ) as an ind-variety:

Z := lim−→
F ′/FG

ZF ′ .

It is now clear that there is a canonical bijection between the Q̄`-rational points on Z and the set
Z1(IF , Ǧ).

(1) Z1(IF , Ǧ) ∼= Z(Q̄`)

During our programme we proved:

Lemma 2.1. For every finite extension F ′ of FG, the group Ǧ (resp. ǦΓ-ad := Ǧ/Z(Ǧ)Γ) is re-
ductive and acts on ZF ′ in the category of algebraic varieties; moreover, Ǧ (resp. ǦΓ-ad) acts on
Z in the category of ind-varieties.

2.2. Langlands parameters with trivial monodromy. In order to recognize HomΓG(WF ,
LG)

as an ind-variety, it seems necessary to make a slightly disagreeable choice: we fix a lift Fr ∈ WF

of arithmetic Frobenius for Fq; equivalently, we fix a splitting of the short exact sequence

1 // IF // WF
// WFq

FrF
yy

// 1.

Using this choice we may identify elements φ ∈ HomΓG(WF ,
LG) with pairs (z, s) tied together by

the condition

z( Frσ) = s Frz(σ)
Frσ(s−1), ∀σ ∈ IF ;

to recover such a pair from φ let s be the image of Fr in Ǧ and let z ∈ Z1(IF , Ǧ) be the restriction
of φ to IF .

To pass from HomΓG(WF ,
LG) to L-parameters with trivial monodromy we need one more con-

dition. Let ǦFr-ss be the subvariety (neither open nor closed, in general) of s ∈ Ǧ such that so Fr
lies in the variety LG

ss
of semisimple elements in LG. For every finite extension F ′ of FG, define

YF ′ := {(z, s) ∈ ZF ′ × ǦFr-ss | z( Frσ) = s Frz(σ)
Frσ(s−1), ∀σ ∈ IF ′/F }

and set Y := lim−→F ′/FG
YF ′ . We may now write

Y = {(z, s) ∈ Z × ǦFr-ss | z( Frσ) = s Frz(σ)
Frσ(s−1), ∀σ ∈ IF }.

Lemma 2.2. For each lift Fr of arithmetic Frobenius for Fq, making use of Equation 1 and

Lemma 2.1, there is a canonical, Ǧ-equivariant bijection between the Q̄`-rational points on Y =
YFr(

LG) and the set of Langlands parameters for G with trivial monodromy.

HomΓG(WF ,
LG

ss
) −→ Y (Q̄`)

defined by λ 7→ (λ|IF , λ(Fr)).
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2.3. The geometric parameter ind-variety. Let X = XFr(
LG) be the ind-variety defined by

X = lim−→F ′/FG
XF ′ , where XF ′ is the variety of triples (z, s,N) ∈ ZF ′ × ǦFr-ss × ǧnilp such that, for

each σ ∈ IF ′/F ,

s Frz(σ)
Frσ(s−1) = z( Frσ)(2)

s FrN s−1 = qN,(3)

z(σ) σN z(σ)−1 = N.(4)

Lemma 2.3. Although the ind-variety X = XFr(
LG) does depend on the choice Fr made above,

the isomorphism class of X does not. For each lift Fr of arithmetic Frobenius for Fq, there is a

canonical, Ǧ-equivariant bijection between the Q̄`-rational points on X and the set of Langlands
parameters for G.

For reasons that will be apparent later (looking ahead to Theorem 2.1), we refer to XFr(
LG) as

the geometric parameter ind-variety for G.

2.4. Vogan varieties and a stratification of the geometric parameter ind-variety. Notice
that the geometric parameter ind-variety comes equipped with various Ǧ-equivariant projections,
given below.

X
(z,s,N)7→(z,s)

π
||

(z,s,N)7→N

##
Y

(z,s)7→z

��

(z,s)7→s

!!

ǧnilp

Z ǦFr-ss

Lemma 2.4. The Ǧ-equivariant morphism π : X → Y given by (z, s,N) 7→ (z, s) determines a
stratification of X into disjoint, connected Ǧ-stable (resp. ǦΓ-ad-stable) subvarieties of X:

(5) X =
∐
O⊆Y

π−1(O),

where the disjoint union is taken over all Ǧ-orbits in Y . Moreover, the group Ǧ (resp. ǦΓ-ad)
acts on π−1(O) with only finitely many orbits, which are locally closed subvarieties of X. Thus, X
admits a stratification into locally closed, Ǧ-stable (resp. ǦΓ-ad-stable) subvarieties.

As with all the results in this report, the proof of this lemma will appear elsewhere. However, it
is worth taking a moment to discuss the construction of this stratification, since it is will play an
important role in the main result of this section, Theorem 2.1.

Fix y = (z, s) ∈ Y . By construction, there is some finite extension F ′ of FG such that y ∈ YF ′ .
Observe that π−1(YF ′) = XF ′ and that the projection πF ′ : XF ′ → YF ′ , given by (z, s,N) 7→ (z, s),
is a morphism of algebraic varieties. Thus, π−1(y) is a closed subvariety in X. The proof of
Lemma 2.4 shows that

π−1(z, s) = {(z, s,N) ∈ XF ′ |N ∈ Zǧ(z)s,q}
where Zǧ(z)s,q is the q-eigenspace of the semisimple automorphism of the Lie algebra of

ZǦ(z) = {g ∈ Ǧ | z(σ) ( σg) z(σ)−1 = g, ∀σ ∈ IF ′/F }
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given by s × Fr : N 7→ s ( FrN) s−1. Observe that YF ′ is a subvariety of |IF ′/F |-copies of Ǧ, on

which Ǧ acts, component-wise, by conjugation. The proof of Lemma 2.4 also shows that Ǧ-orbit
OǦ(y) of y = (z, s) ∈ Y is a subvariety in Y , and provides an isomorphism

π−1(OǦ(y)) ∼= Ǧ×ZǦ(y) π−1(y)

where

ZǦ(y) = ZǦ(z, s) = {g ∈ ZǦ(z) | s ( Frg) s−1 = g}.
Since the varieties π−1(OǦ(y)) appear in [14] (though without situating them in the geometric
parameter ind-variety X) we refer to them as Vogan varieties. Since some of the arguments used
to prove Lemma 2.4 also appear in Vogan’s work. As shown in [14], each Vogan variety is stratified
into finitely-many locally closed subvarieties formed by Ǧ-orbits. As the proof of Lemma 2.4 shows,
each Vogan variety is also ǦΓ-ad-stable and each Vogan variety is stratified into finitely-many locally
closed subvarieties formed by ǦΓ-ad-orbits. In summary, the geometric parameter ind-variety X is
stratified by the Ǧ-orbits (resp. ǦΓ-ad-orbits) in the Vogan varieties appearing in X. That is the
content of Lemma 2.4.

2.5. Geometric parameters. The geometrization of Langlands parameters is achieved by intro-
ducing the categories

(6) PervǦ(X) :=
⊕
O

PervǦ(π−1(O))

and

(7) PervǦΓ-ad
(X) :=

⊕
O

PervǦΓ-ad
(π−1(O)),

where the categorical sum of abelian categories is taken over Ǧ-orbits in Y . Objects in this category
are finite direct sums of perverse sheaves on Vogan varieties. Note that any finite union of Vogan
varieties in X form a variety in the geometric parameter ind-variety X = XFr(

LG).

Theorem 2.1. There is a canonical bijection between isomorphism classes of simple objects in the
abelian category

PervǦΓ-ad
(X)

and equivalence classes of pairs (φ, ε) where φ is a Langlands parameter and ε is an irreducible
representation of the finite group

Sφ :=ZǦ(φ)/ZǦ(φ)0 Z(Ǧ)Γ.

Likewise, there is a canonical bijection between isomorphism classes of simple objects in the abelian
category

PervǦ(X),

and equivalence classes of pairs (φ, τ) where φ is a Langlands parameter and τ is an irreducible
representation of the finite group

ZǦ(φ)/ZǦ(φ)0.

Theorem 2.1 (and Lemma 2.4, upon which the theorem depends) is a variation on results due
to Vogan; see [14, Cor. 4.6]. Because of this theorem, we refer to PervǦΓ-ad

(X) as the category
of geometric parameters and refer to simple objects in PervǦΓ-ad

(X) as geometric parameters. We
also refer to PervǦ(X) as the category of geometric pure parameters and refer to simple objects in
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PervǦ(X) as geometric pure parameters; the use of the term ‘pure’ in this context will be justified
elsewhere. For a simple example of category PervǦΓ-ad

(X), see Section 5.1.
As mentioned above, there is considerable overlap between the ideas presented in this section

and [14]. While the geometric parameter ind-scheme X does not appear in [14], the Vogan varieties
do, and the idea of interpreting complete Langlands parameters as equivariant perverse sheaves on
Vogan varieties is one of the key ideas in [14], although our group arrived at this idea independently.
In particular, if, in the second part of Theorem 2.1, one replaces the ind-variety X by a single
Vogan variety and if one also replaces equivalence classes of complete pure Langlands parameters
by equivalence classes of complete pure Langlands parameters with given infinitesimal character,
then one recovers a result that can also be found in [14].

3. Geometric parameters and Koszul duality

In Section 2 we saw how to geometrize (and categorify) complete Langlands parameters (resp.
complete pure Langlands parameters): by Theorem 2.1, isomorphism classes of simple objects in
the category PervǦΓ-ad

(XFr(
LG)) (resp. in the category PervǦ(XFr(

LG)) correspond to equivalence
classes of complete Langlands parameters (resp. complete pure Langlands parameters).

In this section we sketch an argument, developed during our programme, showing that these
categories are Koszul, in a sense made precise below. Here we consider only the category of geometric
pure parameters, leaving a treatment of the category of geometric parameters for another time. As
mentioned in Section 2.4, the Vogan varieties π−1(OǦ(y)) appearing in the parameter ind-variety
XFr(

LG) lie in distinct components of XFr(
LG). In this section we use Lemma 2.2 to match y with

an L-homomorphism λ : WF → LG and use the notation

Xλ = π−1(OǦ(y))

for the Vogan variety determined by the orbit OǦ(y). Consequently, Equation (5) yields a categor-
ical direct sum decomposition

PervǦ(X) =
⊕
λ

PervǦ(Xλ)

where the sum is taken over all equivalence classes (for the action of Ǧ) of L-homomorphisms
λ : WF → LG. In our study of Koszulness, it is therefore enough to treat each summand category,
PervǦ(Xλ), separately.

In this section we also wish to emphasise the fact the category under consideration, PervǦ(Xλ),

is completely determined by the quasi-split reductive algebraic group Ǧ, equipped with an action
of Γ = Gal(F̄ /F ). For this reason we break from the notation of Section 2 and write G for any
connected complex reductive group equipped with an action of Γ.

3.1. Overview of Koszul duality. Consider a nonnegatively graded ring A =
⊕

i≥0A
i. Given a

graded module M =
⊕

i∈ZM
i, let M(j) be the graded module whose i-th component is given by

M(j)i = M i−j . The ring A is said to be Koszul if the following conditions hold:

• A0 is a semisimple ring.
• Regarding A0 as a graded A-module, we have Exti(A0, A0(j)) vanishes unless i = j.

Under certain finiteness conditions, there is a duality phenomenon that occurs: the graded ring
A† =

⊕
i≥0 Exti(A0, A0(i)) is again Koszul, and there is a natural isomorphism (A†)† ∼= A.

The importance of this notion in representation theory was established by the breakthrough
discovery by Beilinson–Ginzburg–Soergel [3] that certain rings related to Lie algebra representations
in category O are Koszul, and, moreover, that the Koszul duals of these rings also admit descriptions
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in terms of category O. Since then, a number of additional examples of Koszul duality have been
established: see, for instance, [1, 6, 13].

3.2. Geometric Koszul duality. Geometric examples of Koszul duality have been particularly
important. In the seminal work [3], the authors considered the flag variety X for a reductive group
G, stratified by orbits of a Borel subgroup B. They show that the category PervB,c(X) of perverse
sheaves that are constructible with respect to this stratification is Koszul.

More precisely, they show that PervB,c(X) is equivalent to a category of ungraded modules over
a Koszul ring (whose grading has been forgotten). In order to bring graded phenomena into the
geometric setting, one must make use of the richer structure of “mixed geometry”: either mixed
`-adic perverse sheaves on a variety over a finite field, or mixed Hodge modules on a complex variety.
This step is quite delicate: the category of all mixed perverse sheaves or mixed Hodge modules is
too large, and has unwanted Ext-groups that contradict Koszulity. But suitable modified categories
can sometimes play the role of graded modules. In this report, for simplicity, we denote these mod-
ified categories (in either the mixed `-adic or Hodge setting) with notation such as “Pervmix

B,c (X),”
suppressing technical issues in their definition.

In the case of the flag variety, the category Pervmix
B,c (X) turns out to be equivalent to its Koszul

dual. A far-reaching generalization of this result in the setting of Kač–Moody groups has recently
been established by Bezrukavnikov–Yun [5].

A key property of Pervmix
B,c (X) is that it is equipped with a de-grading functor κ : Pervmix

B,c (X)→
PervB,c(X) (see [3, §4.3]) that allows one to make a comparison of Ext-groups between the two
categories. Further ingredients in the proof of Koszulity are discussed in Section 3.4 below.

3.3. Aim of the project. We hope to show that the category PervG(Xλ) of G-equivariant perverse
sheaves on Xλ is “Koszul.” As above, this means that a certain “mixed” (`-adic or Hodge) category

Pervmix
G (Xλ) is Koszul, and that there is a de-grading functor κ : Pervmix

G (Xλ)→ PervG(Xλ).
(Note that this is, in general, a smaller category that the category PervG,c(X

λ) of all perverse
sheaves that are constructible with respect to the stratification by G-orbits. In contrast with
the flag variety case considered above, the category PervG,c(X

λ) contains unwanted objects of no
representation-theoretic significance.)

3.4. Outline for the proposed research project. Some of the themes that have arisen in pre-
vious work on Koszul duality in geometric settings include: pointwise purity and parity vanishing;
quasi-hereditary categories; and derived equivalences for the perverse t-structure. Below, we con-
sider these themes in the context of Vogan varieties.

3.4.1. Pointwise purity and parity vanishing. A simple object L ∈ MHM�(X) is said to be pointwise
pure if, for every orbit S ⊂ X, the restriction L|C is a pure object of DbMHM(C). The close
relationship between pointwise purity and Koszul duality has been observed by a number of authors;
see, for instance, [4, Remark 4]. It plays a prominent role in [3, 5]. Another key feature is parity
vanishing : this is the requirement that the cohomology sheaves Hi(L|C) vanish for all odd i (or
perhaps all even i, depending on the dimensions of C and of the support of L). This type of
condition holds on the flag variety [8] and on the nilpotent cone [12].

For Vogan varieties, it seems that both properties can be deduced from the work of Lusztig on
perverse sheaves on graded Lie algebras [9]. Indeed, Lusztig’s motivation seems to have been the
study of Vogan varieties, and the precise link between his work and these varieties is likely well
understood by experts, but we have been unable to find a thorough account of this link in the
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literature. Thus, this aspect of the project will be mainly expository; we nevertheless believe it will
be useful contribution.

3.4.2. Quasi-hereditary property. Vogan varieties shares the property with the flag variety that the
push-forward functors attached to orbits are t-exact. In other words, for an orbit C ⊂ Xλ and a
local system E on C, the objects

j!E[dimC] and j∗E[dimC]

(where j : C → Xλ is the inclusion map) are perverse. These objects, called standard and costand-
ard perverse sheaves, respectively, satisfy at least the first five of the six axioms in [3, §3.2]. By an
argument of Ringel explained in loc. cit., one can then deduce that the categories PervG(X) and

Pervmix
G (X) have enough projectives and injectives.

For the flag variety, the next step is to establish a derived equivalence DbPerv(X) → Db(X),
using a key Ext2-vanishing property for standard and costandard objects. (This is the sixth axiom
in [3, §3.2].) Unfortunately, the relevant Ext2-group can be nonzero on the Vogan variety, and
indeed, the derived category DbPervG(Xλ) is not, in general, equivalent either to Db(Xλ) or to the
G-equivariant derived category Db

G(X).

3.4.3. Realization functor. To rephrase the last observation: the Ext-groups in Pervmix
G (X) cannot

directly be identified with Hom-groups in any “geometric” derived category. Thus, a study of these
Ext-groups is the most difficult aspect of the project.

A rather general construction [2] gives us a t-exact functor ρ : DbPervmix
G (X)→ Db

G,m(X), called

a realization functor. This functor induces an isomorphism on Ext1-groups and an injective map on
Ext2-groups, but beyond that, little can be said in general. In our setting, we hope to use parity-
vanishing phenomena in Pervmix

G (X) to establish a tighter relationship between the two triangulated

categories, and ultimately to deduce the Koszulity of Pervmix
G (X) from known Ext-vanishing facts

in Db
G,m(X).

3.4.4. Identifying the Koszul dual. As noted above, many of the most celebrated results on the
theme of Koszul duality have two parts: they establish the Koszulity of some ring arising in repres-
entation theory, and they identify the Koszul dual ring as an object having representation-theoretic
significance on its own. Unfortunately, for the moment, we do not know of a suitable candidate
category that might be the Koszul dual of the (putatively) Koszul category PervG(Xλ). We hope
to study this question through examples in the future.

4. Geometric characters for p-adic tori

During our programme we understood how to geometrize admissible characters of unramified,
induced p-adic tori, generalising earlier work on geometrization of admissible characters of F×.

4.1. Classical geometrization. Let us begin by recalling classical geometrization. For the mo-
ment, let G be a connected, commutative algebraic group over Fq. In this context, geometrization
is well-understood: use the Lang morphism for G to define π1(G, ē)→ G(Fq) and thus convert each
character χ : G(Fq)→ Q̄` into a character of the fundamental group π1(G, ē)→ Q̄×` . In this way we
define an (isomorphism class of an) `-adic local system Lχ on the etale site of G, from the character
χ. By base change, the local system Lχ defines a local system L̄χ on Ḡ :=G⊗Fq F̄q equipped with
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an isomorphism φχ : Fr∗L̄χ → L̄χ such that the trace of Frobenius, t
Lχ
Fr : G(Fq)→ Q̄×` , defined by

the diagramme

(Fr∗L̄χ)ḡ

canonical
isomorphism

(φχ)ḡ // (L̄χ)ḡ

(L̄χ)ḡ,
t
Lχ
Fr (g)

::

recovers the character χ : G(Fq)→ Q̄`. It is easy to characterise the local systems on G that arise
in this manner: if L is a local system on G and if there is an isomorphism

(8) L� L ∼= m∗L,

where m : G×G→ G is the multiplication map for G, then tLFr : G(Fq)→ Q̄×` is a character, and
all `-adic characters of G(Fq) are produced in this way. The final miracle is this: if L and L′ both

admit isomorphisms as in (8) and if tLFr = tL
′

Fr , then L ∼= L. Consequently, the trace of Frobenius
L 7→ tLFr defines an isomorphism of groups{

local systems L on G

∃ L� L ∼= m∗L

}
/iso

−→ Homgrp(G(Fq), Q̄`)

These facts are well-known. Since isomorphism classes of local systems appearing on the left-hand
side above correspond to characters of G(Fq), it is common to refer to such local systems as character
sheaves on G. We will revisit this definition in the next two sections.

4.2. Geometric characters for commutative groups. In order to justify the claims made
above, one must make crucial use of the fact that G is connected and finitely generated over Fq, in
that section. But we wish to loosen these conditions on G to admit non-connected, commutative
group schemes over Fq. As we understood during our programme, for that we require a new
definition, given here.

Let G be a commutative group scheme over Fq. A geometric character on G is an `-adic local
system L̄ on Ḡ :=G×Spec(Fq) Spec

(
F̄q
)
, with three supplementary structures:

(1) an isomorphism µ : m∗L̄ −→ L̄� L̄;

(2) a rigidification r : L̄ē
∼=−→ Q̄` at the geometric point ē of Ḡ lying above the origin e of G;

(3) an isomorphism φ : Fr∗L̄ → L̄.
The quartuple L = (L̄, µ, r, φ) must also satisfy some natural compatability conditions which we
omit from this report. It is a consequence of this definition that if L = (L̄, µ, r, φ) is a geometric
character then L̄ is an irreducible local system on Ḡ. We write GC(G) for the additive category
generated by geometric characters on G, with obvious definition for morphisms. (This category will
be treated carefully in one of the papers based on our programme.) Simple objects in GC(G) are
geometric characters on G.

4.3. Comparison with character sheaves. If we return to the case when G is a connected,
commutative algebraic group over Fq, then the forgetful functor (L̄, µ, r, φ) 7→ (L̄, φ) takes geometric
characters on G to character sheaves on G, as defined in Section 4.1. While this functor is full and
essentially surjective, it is not faithful. If G = T is also an algebraic torus, and (L̄, µ, r, φ) is a
geometric character such that L̄n = Q̄` for some positive integer n then L̄ is a character sheaf on
T̄ , as defined by Lusztig, and all Frobenius-stable character sheaves on T̄ arise in this manner.
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4.4. Greenberg of Neron. In this section we introduce a geometric space needed to geometrize
admissible characters of p-adic tori. Let us set some notation and briefly recall the filtration of
admissible characters by depth. Let F be a non-Archimedean local field with residual field Fq and
let T be an algbraic torus over F . Let χ : T (F )→ Q̄×` be an admissible character. Then the depth
of χ is given by

inf{r ≥ 0 | ∀s > r, T (F )s ⊂ ker(χ)},
where the filtration

T (F ) ⊇ T (F )0 ⊇ · · · ⊇ T (F )s ⊇ · · · ,
is defined in [10] or equally in [11]. Let Homd(T (F ), Q̄×` ) be the group of `-adic characters of T (F )
with depth less than or equal to d. In the next few sections we will explain how to geometrize
elements of the group Homd(T (F ), Q̄×` ), along the lines of Section 4.1

4.4.1. Neron models. The Neron model for T is a smooth group scheme TR locally of finite type
over R with generic fibre T , such that for every smooth group scheme Y over R, the canonical
function

HomR(Y, TR)
restriction to
generic fibres

base change along
Spec(F )→Spec(R)

// HomF (Y ×S Spec(F ), T )

is bijective; in particular, TR(R) ∼= T (F ). Neron models exist for all p-adic tori, and are unique up
to isomorphism.

4.4.2. Greenberg transform. Let A be an Artin local ring; let k be its residual field. Marvin Green-
berg [7] has defined a functor(

Sch/A
)

lft

Greenberg
transform //

(
Sch/k

)
lft

X
� // Gr(X)

with a number of agreeable properties, including, for every X and Y , locally of finite type over A:
a canonical bijection X(A) ∼= Gr(X)(k); if X if affine (resp. smooth, finite etale) then so is Gr(X);
if X → Y is an open subscheme (resp. a closed subscheme) then so is Gr(X)→ Gr(Y ).

4.5. Geometrization of characters of bounded depth. During our programme we put together
a proof of the following result.

Theorem 4.1. Let T be an induced, unramified torus over F . For each d ∈ N, let Td be the
Greenberg transform of TR ×Spec(R) Spec

(
R/pd+1

)
, where TR is a Neron model for T . The trace of

Frobenius defines an isomorphism of groups from isomorphism classes of simple objects in GC(Td)
to Homd(T (F ), Q̄×` ).

4.6. Admissible geometric characters. Consider the commutative pro-algebraic group TFq := lim←−d∈N Td.
Amazingly, this limit exists in the category of groups schemes over Fq. It comes equipped with a
canonical isomorphism

TFq (Fq) ∼= T (F ).

A geometric character on TFq is admissible if there is an integer d ∈ N and a geometric character
on Td such that L = f∗Ld where f : TFq → Td is the obvious map. Let GCad(TFq ) be the
category of admissible geometric characters on TFq . For a simple example of category GCad(TFq ),
see Section 5.2.

The main result of Section 4 is the following theorem, which follows from Theorem 4.1, the
definition above, and a small amount of extra work.
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Theorem 4.2. Let T be an induced, unramified torus over F . The trace of Frobenius defines
an isomorphism of groups, compatible with the fitration by depth on both sides, from isomorphism
classes of simple objects in GCad(TFq ) to Homad(T (F ), Q̄×` ).

5. Geometric reciprocity

In Section 2 we saw how to geometrize Langlands parameters for quasisplit groups G over F by
introducing the category PervǦΓ-ad

(XFr(
LG)) and studying isomorphism classes of simple objects in

this category. In Section 4 we saw how to geometrize admissible characters of unramified, induced
T tori over F by introducing the category GCad(TFq ) and studying its simple objects. This raises

the question: supposing G = T , is there a functor from GCad(TFq ) to PervǦΓ-ad
(XFr(

LT )) that
defines the reciprocity map for T by restriction to (isomorphism classes of) simple objects? In this
section we answer that question when G = T = Gm,F .

5.1. Geometric parameters for Gm,F . Set G = Gm,F . Then Ǧ = Gm,Q̄` and ΓG = 1 so LG =
Gm,Q̄` . Recall that the definition of Y (see Section 2.2) and X (see Section 2.3) require the choice

of a lift Fr of Frq. We will revisit this choice in Section 5.3. Observe that Ǧ acts trivially on Z (see
Section 2.1) and Y and X. The ind-variety Y is a totally disconnected space. For each admissible
λ : WF → Q̄×` , the corresponding Vogan variety Xλ = π−1(OǦ(y)) is {y}, where y ∈ Y is the
point corresponding to λ under Lemma 2.2. So X = Y is a totally disconnected space with trivial
Gm,Q̄`-action. With reference to Section 2.5, PervǦ(X) = Perv(Y ); thus,

PervǦ(XFr(
LG)) =

⊕
y∈Y

Perv({y}) ∼=
⊕

λ∈Homad(WF ,Q̄×` )

Perv(Spec
(
Q̄`
)
).

It follows that PervǦ(XFr(
LG)) is equivalent to the category of finite-dimensional admissible `-adic

representations of W ab
F :

(9) PervǦ(XFr(
LG)) ∼= RepQ̄`,ad(W ab

F ).

Under this equivalence, simple objects in PervǦ(XFr(
LG)) correspond to one-dimensional repres-

entations of WF . The equivalence above induces a bijection between isomorphism classes of simple
objects in PervǦ(XFr(

LG)) and admissible characters of WF :

Homad(WF , Q̄×` ) −→ simp. objPervǦ(XFr(
LG))/iso

defined by λ 7→ (Q̄`){y}, where y corresponds to λ under Lemma 2.2 and (Q̄`){y} is the sheaf on

X = Y supported at {y} where it is the constant sheaf Q̄`. This is a special case of Theorem 2.1.

5.2. Geometric characters for Gm,F . Set T = Gm,F , so TFq is the Greenberg transform of the
Neron model of Gm,F . Theorem 4.2 can be strengthened to an equivalence of categories

(10) GCad(TFq )
∼= RepQ̄`,ad(T (F ))

between the category of admissible geometric parameters on TFq and the category of finite-dimensional,
admissible `-adic representations of T (F ). This equivalence (and the proof of Theorem 4.2) is too
complicated to describe in this report, but is currently being prepared for publication.
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5.3. Geometric reciprocity for non-Archimedean local fields. Class field theory provides
an isomorphism W ab

F
∼= F× and thus an equivalence of categories between RepQ̄`,ad(W ab

F ) and

RepQ̄`,ad(F×). In light of Sections 5.1 and 5.2, this determines an equivalence between PervǦΓ-ad
(XFr(

LT ))
and GCad(TFq ), when T = Gm,F .

PervǦΓ-ad
(XFr(

LT ))

equivalence Section 5.2

geometric reciprocity functor
GCad(TFq )

equivalenceSection 5.1

RepQ̄`,ad(W ab
F )

class field theory

equivalence
RepQ̄`,ad(F×)

During the last day of our programme we discussed a geometric construction which leads to a
functor directly from PervǦΓ-ad

(XFr(
LT )) to GCad(TFq ) without recourse to class field theory. We

(presumptuously) call this a geometric reciprocity functor. If it agrees with the equivalence given
by class field theory, such a functor would actually recover the isomorphism W ab

F
∼= F× from our

geometric reciprocity functor. This is now a topic of research in progress.
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