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Abstract

Let F be a nonarchimedean field of characteristic zero. Let G be a
connected reductive group that is split over F . Let X be a homogeneous
spherical G-variety with F -points X = X(F ). From the point of view of
harmonic analysis, it is interesting to ask: when does an admissible
representation ⇡ of G = G(F ) occur in L2(X )? Sakellaridis and
Venkatesh (Astérisque 396) have conjectured that ⇡ occurs in L2(X ) if
and only if ⇡ appears in an Arthur packet attached to a “distinguished”
Arthur parameter  : LF ⇥ SL(2,C) ! G_, that is,  factors through a
“distinguished morphism” % : G_

X
⇥ SL(2,C) ! G_, where G_

X
is a

complex dual group associated to X, via a tempered Langlands parameter
� : LF ! G_

X
. We will discuss several instances of a refinement of this

conjecture for representations in the discrete spectrum of X in the case
that G = GLN and X is a p-adic symmetric space.
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Road map

I Distinguished Arthur parameters
I The dual group G_

X and distinguished morphisms
I Local conjectures of Sakellaridis and Venkatesh [SV17]

I Example 1: Linear periods and functorial transfer from SO(2n + 1)

I Example 2: Symplectic periods and Speh representations

I Example 3*: Galois distinction and unitary groups

I Epilogue: It seems everyone is working on G2 these days...
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Groups, fields and varieties

I F : a nonarchimedean local field, char(F ) = 0

I LF = WF ⇥ SL(2,C): local Langlands group
I G: a connected reductive split group over F
I X: a homogeneous spherical G-variety

I X is a normal F -variety with a transitive G action
I spherical: a Borel subgroup of G has a Zariski-dense orbit X†

I Fix x0 2 X †, H = StabG(x0)
I X ⇠= H\G

I In the Examples: H = G✓, ✓ 2 AutF (G) an involution
I X = G✓\G a symmetric variety
I J.S. Milne, Algebraic groups, (2017), Theorem 5.28 / Chapter 7e.

I Denote F -points by G = G(F ), X = X(F ), etc.

I All representations are smooth, admissible, on C vector spaces
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Harmonic analysis on X : distinguished representations

I Goal: understand L2(X ) as a unitary representation of G
I discrete spectrum?
I Plancherel measure and direct integral decomposition?
I support of Plancherel measure?

I an rep. (⇡,V ) occurs in C1(X ) if an only if HomH(⇡, 1) 6= {0}
I � 2 HomH(⇡, 1) nonzero, 8 v 2 V 7! '�,v 2 C1(X )

'�,v (g) = h�,⇡(g)vi

v 7! '�,v is a G -morphism

Definition

(⇡,V ) is H-distinguished if HomH(⇡, 1) 6= {0}

Definition

An irred. (unitary) H-dist. rep. (⇡,V ) is a relative discrete series (RDS)
if (⇡,V ) is isomorphic to a direct summand of L2(X )

J.M. Smith Distinguished Arthur parameters and RDS



Introduction
Examples

Epilogue: What about G2?
Distinguished Arthur parameters

The dual group G_
X

I G_ the complex dual group of G
I Following work of Gaitsgory and Nadler, Sakellaridis and Venkatesh

have associated to X a complex reductive group G_
X

which we’ll call
the dual group of X
I X ⌃X : “spherical roots” of AX

⇠= A0/(A0 \H)
I WX little Weyl Group
I �X “simple normalized spherical roots”; �X = WX ·�X

I (�X ,�X ) based root system; R = HomF (AX ,Gm)
I (R_,�_

X ,�
_
X ,R,�X ,�X ) is a based root datum

I G_
X

is the complex algebraic group associated to this root datum
I canonical maximal torus A⇤

X and map A⇤
X ! A⇤ dual to A0 ! AX

I A⇤ ⇢ G_ the complex dual torus of A0

Question

Can we extend the canonical map A⇤
X
! A⇤ to a morphism G_

X
! G_?
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The dual group G_
X

Example

X G_
X

(GLn ⇥ GLn)\GL2n Sp(2n,C)
Sp2n\GL2n GL(n,C)

GGP case1: SOn�1\SOn
fSL2

SL3\G2
fSL2

G2\Spin7 SL(2,C)

1This is the setting of Gan–Gross–Prasad.
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Distinguished morphisms

Definition

A distinguished morphism % : G_
X
⇥ SL(2,C) ! G_ is a group

homomorphism such that

1 the restriction of % to G_
X

extends the canonical map of tori
A⇤
X
! A⇤

2 for every simple normalized spherical root �0 2 �X , the
corresponding root space of the Lie algebra g_

X
maps into the sum of

root spaces of its associated roots under the di↵erential of %

3 the restriction of % to the SL(2,C) factor is a principal morphism
into M_

0 ⇢ G_ with weight 2⇢M0 : Gm ! G_, where Gm is identified

with the maximal torus of SL(2,C) via a 7!
✓
a 0
0 a�1

◆
and 2⇢M0 is

the sum of the positive roots of A0 in M0.

I Knop–Schalke [KS17]: Distinguished morphisms exist
I S–V: Distinguished morphisms are unique up to A⇤-conjugacy

[SV17, Proposition 3.4.3]
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Distinguished morphisms: examples

Example

I X = (GLn ⇥ GLn)\GL2n

I G_
X
= Sp(2n,C) and G_ = GL(2n,C)

I The distinguished morphism % : G_
X
⇥ SL(2,C) ! G_ is trivial on

the SL(2,C) factor and is given by the inclusion map G_
X
,! G_.

Example (SV, Example 1.3.2)

I X = Sp2n\GL2n

I G_
X
= GL(n,C) and G_ = GL(2n,C)

I The distinguished morphism % : GL(n,C)⇥ SL(2,C) ! GL(2n,C) is
given by the tensor product of the standard n-dimensional
representation of GL(n,C) with the standard 2-dimensional
representation S(2) of SL(2,C).
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Sakellaridis & Venkatesh: Local conjectures I

Definition

An A-parameter  : LF ⇥ SL(2,C) ! G_ is X -distinguished if it factors
through the distinguished morphism % : G_

X
⇥ SL(2,C) ! G_.

LF ⇥ SL(2,C) G_

G_
X
⇥ SL(2,C)

 

%9 �X ⇥ Id

That is,  is X -distinguished if and only if there exists a tempered
(bounded on WF ) L-parameter �X : LF ! G_

X
such that

 = % � (�X ⇥ Id).
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Sakellaridis & Venkatesh: Local conjectures II

We recall the following conjecture [SV17, Conjectures 1.3.1 and 16.2.2].

Conjecture (Sakellaridis–Venkatesh)

The support of the Plancherel measure for L2(X ), as a representation of
G , is contained in the union of Arthur packets attached to
X -distinguished A-parameters.

Definition

An X -distinguished A-parameter is X -elliptic if it factors through % via an
elliptic L-parameter �X : LF ! G_

X
, that is, the image of �X is not

contained in any proper Levi subgroup of G_
X
.

The following is part of [SV17, Conjecture 16.2.2].

Conjecture (Sakellaridis–Venkatesh)

A relative discrete series representation ⇡ in L2(X ) is contained in an
Arthur packet corresponding to an X -distinguished X -elliptic
A-parameter.

J.M. Smith Distinguished Arthur parameters and RDS
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Example 2: Symplectic periods
Example 3: Galois distinction

(GLn ⇥ GLn)\GL2n

I G = GL2n with n � 2

I H = GLn ⇥ GLn is the fixed points of ✓ = Int diag(In,�In).

I nonzero � 2 HomH(⇡, 1) referred to as a (local) linear period

Theorem (Jacquet–Rallis [JR96])

Let (⇡,V ) be an irreducible admissible representation of G .

1 dim(HomH(⇡, 1))  1.

2 If dimHomH(⇡, 1) = 1, then e⇡ ⇠= ⇡.

Theorem (Matringe [Mat14, Proposition 6.1])

Suppose that ⇡ is a square integrable representation of G , then ⇡ is
H-distinguished if and only if the exterior square L-function L(s,⇡,^2)
has a pole at s = 0.
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RDS for (GLn ⇥ GLn)\GL2n
Suppose that F has odd residual characteristic.
Gm = GLm(F ) and Hm = GLm/2(F )⇥ GLm/2(F )

Theorem (S. 2017)

Let {�i}di=1 be pairwise inequivalent Hmi
-distinguished discrete series

representations of Gmi
. The parabolically induced representation

⇡ = �1 ⇥ . . .⇥ �d is a relative discrete series representation.

Theorem (Matringe [Mat14, Theorem 6.1])

Suppose that m = kr is even. Let ⇢ be an irreducible supercuspidal
representation of Gr . Let ⇡ = St(k , ⇢) be a generalized Steinberg
representation of Gm.

1 If k is odd, then r must be even, and ⇡ is Hm-distinguished if and
only if L(s, ⇢,^2) has a pole at s = 0 if and only if ⇢ is
Hr -distinguished

2 If k is even, then ⇡ is Hm-distinguished if and only if L(s, ⇢, Sym2)
has a pole at s = 0.
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Distinguished parameters for (GLn ⇥ GLn)\GL2n I

I G_
X
= Sp(2n,C) and G_ = GL(2n,C)

I The distinguished morphism % : G_
X
⇥ SL(2,C) ! G_ is trivial on

the SL(2,C) factor and is given by the inclusion map G_
X
,! G_.

I An X -distinguished A-parameter is

�⌦ 1 : LF ⇥ SL(2,C) ! G_

where � is a tempered symplectic L-parameter for G .
I Thus S–V predicts that the RDS for X are tempered representations

I Now known by work of Beuzart-Plessis [BP18a], and Gurevich and
O↵en [GO16]

I The L-parameter �� : LF ! GL(m,C) of the generalized Steinberg
representation � = St(k , ⇢) is equal to �� = �⇢ ⌦ S(k),

J.M. Smith Distinguished Arthur parameters and RDS
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Distinguished parameters for (GLn ⇥ GLn)\GL2n II

I The following proposition is a consequence of [JNQ08, Theorem 5.5]
and Matringe’s theorem

Proposition

Suppose m = kr is even. Let ⇢ be an irreducible self-contragredient
supercuspidal representation of Gr . If � = St(k , ⇢) is Hm-distinguished,
then the image of the L-parameter �� is contained in Sp(m,C).

Theorem (S. [Smi18a])

Let ⇡ be a known relative discrete series for (GLn ⇥ GLn)\GL2n.
The A-parameter �⇡ ⌦ 1 of ⇡ is X -distinguished and X -discrete.

I In fact, the known RDS are the only tempered H-distinguished
representations of G with X -distinguished and X -discrete
parameters... so we expect that these are all of the RDS.
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Plancherel formula for (GLn ⇥ GLn)\GL2n

I The Plancherel formula for H\G has been obtained by N. Duhamel
[December 2019, arXiv:1912.08497]

I This also gives the Plancherel formula for the Shalika model of G

Theorem (Duhamel)

There exists a G -equivariant isomorphism of unitary representations

L2((GLn(F )⇥ GLn(F ))\GL2n(F )) ⇠=
Z �

⇧t(SO2n+1(F ))
T (⇡)dµ(⇡)

where dµ is the Plancherel measure on ⇧t(SO2n+1(F )), and
T : e⇧t(SO2n+1(F )) ! ⇧t(GL2n(F )) is the local Langlands functorial
transfer from tempered L-packets e⇧t(SO2n+1(F )).

I Thus the Conjectures of Sakellaridis and Venkatesh hold for
(GLn ⇥ GLn)\GL2n (up to verifying the exhaustion of the discrete
spectrum, which is expected).
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Sp2n\GL2n and Speh representations

I G = GL2n with n � 2

I H = Sp2n is the fixed points of ✓(g) = J�1tg�1J where

J =

✓
0 Jn

�Jn 0

◆

I nonzero � 2 HomH(⇡, 1) referred to as a (local) symplectic period

I H-dist. unitary representations are classified by [OS07, OS08a]

Let � be a discrete series rep. of Gn.

0 ! Z(�, 2) ! ⌫1/2� ⇥ ⌫�1/2� ! U(�, 2) ! 0

I Z(�, 2) unique irreducible generic subrep.

I U(�, 2) unique irred. non-tempered quotient – Speh representation
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Disjointness of models

Heumos and Rallis [HR90]

I U(�, 2) is H-distinguished

I generic representations of G cannot be H-distinguished

I if ⇡ is an irred. adm. rep of G , then

dim(HomH(⇡, 1)) = dim(HomH(e⇡, 1))  1

I much more... “unitary disjointness of models” [HR90, Theorem 3.1]

Existence of mixed models for all irred. unitary ⇡ of GLn(F ) [OS08b]

J.M. Smith Distinguished Arthur parameters and RDS
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RDS for Sp2n\GL2n

The following theorem is an unpublished result of H. Jacquet.

Theorem (Jacquet, S. [Smi20])

Let � be a discrete series representation of GLn(F ).
The Speh representation U(�, 2) of GL2n(F ) is relative discrete series.

Remark

I U(�, 2) is a non-tempered representation of GL2n(F )

I but appears in the discrete spectrum of Sp2n\GL2n

I no discrete series of GL2n is Sp2n-discrete

J.M. Smith Distinguished Arthur parameters and RDS
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Distinguished parameters for Sp2n\GL2n I

I G_
X
= GL(n,C) and G_ = GL(2n,C)

I The distinguished morphism % : GL(n,C)⇥ SL(2,C) ! GL(2n,C) is
given by the tensor product of the standard n-dimensional
representation of GL(n,C) with the standard 2-dimensional
representation S(2) of SL(2,C).

Proposition (S. on Shoulders of Giants)

Let ⇡ be an irreducible unitary Sp2n(F )-distinguished representations of
GL2n(F ). Let  ⇡ : LF ⇥ SL(2,C) ! GL(2n,C) be the A-parameter of
⇡. The A-parameter  ⇡ is X -distinguished and X -elliptic if and only if ⇡
is isomorphic to a Speh representation U(�, 2) for some discrete series
representation � of GLn(F ).
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Distinguished parameters for Sp2n\GL2n II

Sketch of the proof.

I  : LF ⇥ SL(2,C) ! GL(2n,C) be the A-parameter of ⇡

I  is X -distinguished ()  = �X ⌦ S(2), where
�X : LF ! GL(n,C) is a tempered L-parameter

I  is X -elliptic () is �X is elliptic in GL(n,C)
I  is X -dist and X -ell ()  = �� ⌦ S(2) where �� is the

L-parameter of a GLn(F ) discrete series � () ⇡ ⇠= U(�, 2)
This all relies on:

I Tadić’s classification of the unitary dual of GLn

I O↵en and Sayag’s classification of Sp2n(F )-distinguished reps.

I The Local Langlands Correspondence for GLn (i.e., “Giants”)
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Non-split examples: refined conjectures of D. Prasad

I S–V consider only the case when G is split over F .

I D. Prasad [Pra15] has refined the S–V conjectures for ResE/FGLn

where E/F is a quadratic Galois extension

I Prasad emphasizes the “geometry of L-parameters” à la A–B–V

Example

I The space GLn(F )\GLn(E ) has been extensively studied.

I See [Pra15, Conjecture 2] for the analogue of S–V.

I Now “mostly” resolved by [BP18a, BP18b], including an explicit
Plancherel formula in terms of stable/unstable base change from
quasi-split unitary groups and an explicit description of the entire
discrete spectrum (cf. [Smi18c]).
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UE/F (F )\GL2n(E )

I G = ResE/FGLn(F ) ' GLn(E )

I H = UE/F (F ) a quasi-split unitary group

I Beuzart-Plessis extends the distinguished morphism to be compatible
with quadratic base-change

I The following theorem is a special case of Beuzart-Plessis’s result

Theorem (Beuzart-Plessis [BP20])

There exists a G -equivariant isomorphism of unitary representations

L2(H\G ) ⇠=
Z �

⇧t(GL2n(F ))
bc(⇡)dµ(⇡)

where dµ is the Plancherel measure on ⇧t(GL2n(F )), and
bc : ⇧(GL2n(F )) ! ⇧(GL2n(E )) is Arthur–Clozel’s [AC89] quadratic
base-change.
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Results for UE/F (F )\GL2n(E )
I � 2 Gal(E/F ) nontrivial
I ⇧�(G ) = {⇡ 2 ⇧(G ) : ⇡ ⇠= �⇡}
I ⌘ : F⇥ ! C⇥ quadratic character from LCFT
I bc : ⇧(GLn(F ))⇣ ⇧�(GLn(E )) and bc(⇡0) = bc(⇡0 ⌦ ⌘)

The following is a special case of [BP20, Corollary 6.1.1]

Theorem

A RDS ⇡ for UE/F (F )\GL2n(E ) is either

1 An H-dist. discrete series of G , i.e., ⇡ = bc(⇡0) where ⇡0 � ⇡0 ⌦ ⌘

2 A non-discrete series (but tempered) rep. ⇡ = bc(⇡0) ⇠= ⌧ ⇥ �⌧ ,
where ⇡0 ⇠= ⇡0 ⌦ ⌘, and ⌧ � �⌧ is a discrete series of GLn(E ).

Remark

Previously, in [Smi18b, Theorem 5.11] it was shown directly that the
representations in (2) are RDS; however, exhaustion of the discrete
spectrum was not then known.
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Gan and Gomez: Low-rank spherical varieties

Example

X G_
X

G2\Spin7 SL(2,C)
G2\Spin8 SL(2,C)3/�µ2

SL3\G2
fSL2

For these G2 cases, and many other classical and exceptional instances of
low-rank spherical varieties, Gan and Gomez [GG14] have proven the
“support of the Plancherel measure” conjecture of Sakellaridis and
Venkatesh.

Question

What about the relative discrete series?

Remark

We are in the very earliest stages of a new project (with S. Dijols) to
consider the symmetric space SO(4)\G2
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Thank you!
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