arXiv:2101.04578v1 [math.RT] 12 Jan 2021

TOWARD THE ENDOSCOPIC CLASSIFICATION OF UNIPOTENT
REPRESENTATIONS OF p-ADIC Gs2

CLIFTON CUNNINGHAM, ANDREW FIORI, AND QING ZHANG

ABsTrRACT. In this paper, we review the Langlands correspondence for unipotent represen-
tations of the exceptional group of type G2 over a p-adic field F' and present it in an explicit
form. Then we compute all ABV-packets, as introduced in [CFM™21] following ideas from
[Vog93], for these representations and prove that these packets satisfy properties derived
from the expectation that they are generalized A-packets. We attach distributions to ABV-
packets for G2 and its endoscopic groups and study a geometric endoscopic transfer of the
distributions. This paper builds on [CFZ].
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0. INTRODUCTION

0.1. Background and motivation. Local Arthur packets are finite sets IL,(G(F)) of irre-
ducible admissible representations of a local group G(F') characterized by endoscopic character
identities, defined for symplectic group and quasi-split orthogonal groups G and their inner
twists over a local field F in [Art13]. Arthur packets generalize the notion of L-packets and
they remedy certain drawbacks of L-packets associated with stable distributions. These notions
have been extended to some other groups, including unitary groups in [Mok15], but not yet to
exceptional groups, though candidates for some local Arthur packets for Go(F') were proposed
in [GGJ02], [GGO5] and [GSO04]. In this paper we use the microlocal geometry of the moduli
space of unramified Langlands parameters to calculate ABV-packets, as defined in [CFM™*21],
for all unipotent representations of G(F') and also to show that these packets are compatible
with endoscopy in a very precise sense.

Vogan’s work [Vog93] shows that there are advantages to studying the representation theory of
G(F) together with that of its pure inner forms G?(F), simultaneously, in which case one passes
from L-packets I14(G(F)) to "pure" L-packets IIJ""(G) and from Arthur packets L, (G(F))
to "pure" Arthur packets IIJ™°(G). When Arthur’s work is viewed from this perspective,
I, (G(F)) — Rep(Sy) extends to a map II)""(G) — Rep(Ay) where Ay is the component
group of Z5(1)), as explained [CFM™21]. Although there are no pure inner forms of Go(F), its
endoscopic groups do admit pure inner forms.

The geometric construction of Arthur packets for any p-adic group is proposed in [CFM™21]
using vanishing cycles of perverse sheaves, building on ideas introduced by [Vog93] and also by
an adaptation of ideas from [ABV92]. More precisely, for a given algebraic reductive group G
over a p-adic field F' and a local Langlands parameter ¢ of G(F'), Cunningham et.al. constructed
a group A", a packet ITy"" (G) of irreducible representations of G(F) and its pure inner forms,
called the ABV-packet of ¢, and a natural map ITy""(G) — Rep(Ay"). If ¢ happens to be of
Arthur type ¢, then A = Ay.

The main conjecture of [CFM*21] says that when ¢ is of Arthur type ¢ then I (G) =
I17"°(G) and the map II;”"(G) — Rep(Aj™) should be the same as I, (G) — Rep(Ay) when G
is a classical group. The construction in [CFM™21] not only gives a concrete way to compute
Arthur packets for classical groups, as illustrated by the numerous examples in [CFM™21], but
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also provides a method to generalize Arthur packets to exceptional groups and non-Arthur type
local Langlands parameters which, at this moment, seems unreachable using the trace formula
method.

0.2. Fundamental properties of ABV-packets and packet coeflicients. To give some
details of our results, we recall that, in [Lus95] Lusztig proved the local Langlands correspon-
dence for unipotent representations and showed that the unipotent representations are classified
by unramified parameters. In this paper, for each unramified local Langlands parameter ¢ of
G2 (F), we compute the ABV-packets defined in [CFM™*21] and thus we get a decomposition:

H(GQ (F))unip = U H;BV(GZ (F))v
$E€P(G2(F))unr

where II(G2(F'))unip is the set of isomorphism classes of irreducible unipotent representations of
G (F). For every ABV-packet TI™"(G2(F)), the general, canonical, geometric constructions in
[CFM*21] also give a group Ay’ and a function

I3 (Ga(F)

s

—  Rep(A4")

o ()

and thus a function ( , ) : A" x I}™(G2(F)) — Q; we refer to this as the ABV-packet
coefficients for ¢.

In this paper we argue that ABV-packet coefficients provide a canonical way to extend the
notion of Arthur packets to all unipotent representations of the exceptional p-adic group Ga,
including those that are not of Arthur type. For instance, in Theorem 2.2 we show that the ABV-
packet coefficients extend the local Langlands correspondence for unipotent representations
of Go(F): for all unramified Langlands parameters ¢ : W5 — LGa, the following diagram
commutes,

5 (Ga(F) ——— A}

| I

Hy(Ga(F)) ——55— Ao
where AJ™ (resp. Ag) denotes the set of characters of irreducible representations of AJY (vesp.
Ag). Here the local Langlands correspondence is normalized such that if 7 € II4(G2(F)) is
generic or spherical then corresponding representation of Ay is trivial. We give other funda-
mental properties of ABV-packet coefficients in Theorem 2.2.

0.3. Distributions attached to ABV-packets. We study distributions defined by ABV-
packet coefficients. To do this we introduce an algebraic group S;™ contained in Zg(¢) such
that A" = 7(S;") and S3™ = Zg, () if ¢ is of Arthur type ¢. For s € S, we set

Opei= (= LImOmIm®(s ) e, (1)

Trenf;‘jj’(a2(F))

as in Definition 4, where we identify s with its image of s under S, — A" and where O is
the Harish-Chandra distribution character determined by the admissible representation 7. The
terms dim(¢) and dim(w) are defined in Section 2.2. We show that if ¢ is of Arthur type 1 then
(—1)dim(@)=dim(m) (s 7} = (s, 5, 7), where sy, is the image of (1, —1) € Zg,(¥); in this case, (1)
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takes the more familiar form

Oy s = Z (syps,m) O

WGH{;‘:LV(GQ (F))

In Theorem 2.14 we prove that if 7 is an irreducible unipotent representation of Ga(F') then
Or can be expressed in terms of the distributions ©,, , letting ¢ range over unramified L-
parameters with the same infinitesimal parameter as 7 and letting s range over representatives
for the components of S;;BV. This is an important part of the endoscopic classification promised
in the title of this paper. We also show that the span of the distributions © 6,50 A S Tanges
over 4™, coincides with the span of the distributions O, as 7 ranges over II;’", if and only if

I (Go(F)) — 1@ is bijective. In this theorem we also show that if © ;:=© , is stable when
¢ is elliptic (see Section 2.8), then © is stable for all ¢.

0.4. Lifting stable distributions from endoscopic groups. We show the ABV-packet
coefficients ( , ) are compatible with the theory of endoscopy, in the following sense. Let
(G, s,€) be an endoscopic triple for Gy. Unlike the group Ga, the endoscopic groups G may
admit pure inner forms. Recall that a pure inner form for G is a cocycle § € Z1(F,G) and that §
determines an inner form G°® of G. We calculate the ABV-packets and ABV-packet coefficients
for the endoscopic group G. We generalize the definition of the distributions above (1) from
G4 to the pure inner forms of endoscopic groups G for G. Let (G, s,£) be an endoscopic triple
for G3. In Definition 8 we introduce a "lifting" of stable distributions attached to ABV-packets
for G(F) to invariant distributions on Ga(F) and prove Theorem 4.6: if ¢ : W; — LG is an
unramified Langlands parameter that is £-conormal, in the sense of Definition 6, then

. G _
Llft(G,s,{) @¢ = 9504575’ (2)

for all s € S3™, for S;™ given in Definition 1. We show that if ¢ is of Arthur type then it
is always ¢-conormal. Since G(F) is also an endoscopic group for the inner form G°(F) we
also define "lifting" from stable distribution attached to ABV-packets for G(F') to invariant
distributions on G°(F) and show that if ¢ : W} — G is an unramified Langlands parameter
that is relevant to G°(F), in the sense of [Bor79], then the lift of @qus is 6(5)®G8, where e(9) is
the Kottwitz sign. To illustrate Theorem 4.6 we calculate all the lifts to G2(F') of the stable
distributions attached to unramified Langlands parameters for the endoscopic group PGL3(F).
Conjecture 1 predicts that O, ; is the Langlands-Shelstad transfer of the stable distribution
of.

All this comes together in Theorem 4.7, in which we show that ABV-packet coefficients
are uniquely characterized by the properties given in this paper. This result also presents the
endoscopic classification of unipotent representations of Go(F') promised in the title of this paper,
stated here only for tempered representations to simplify the exposition. Let 7 be a tempered
unipotent representation of Ga(F) with Langlands parameter ¢. Every s € S, determines an
endoscopic triple (G, s,€) and a factorization ¢ = £ o ¢°, for a Langlands parameter ¢° for G.
In this case, Theorem 4.7 gives

g 1 dim(qﬁ‘*)—dim(w)ﬂ Lift G
© (C:Zg)( ) |Za,(s)] #t(c,s.6) O (3)

where the sum is taken over equivalence classes of endoscopic triples (G,s,€) with s € S3™
and where we identify s with its image under S;™ — A" in the calculation of Za,(s). This
result is generalized from tempered unipotent representations to a wider class of unipotent
representations in Theorem 4.7.
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0.5. Next steps. Before we can declare that the ABV-packets of this paper are indeed (gen-
eralized) Arthur packets for G5(F'), and change the title of this paper to The Endoscopic clas-
sification..., the following two issues must be addressed: (1) we must show that @g is a stable
distribution for every unramified Langlands ¢ of G(F) of Arthur type, where G(F) is an endo-
scopic group for Go(F); and (2) we must show that, if (G, s, §) is an endoscopic triple for Go(F),
then
05 (f*) = Oog,s(f)

when f € H(G2(F)) is the Langlads-Shelstad transfer of f* € H(G(F)); in other words, we
must show that O . is the endoscopic lift of @g.

In fact, it is a conjecture of Vogan that (1) is true for all Langlands parameters. This is
elementary for unramified parameters except when G = G5 and, as we show in Theorem 2.14,
in that case it is sufficient to show that ©4 is stable for the four elliptic, tempered, unipotent
L-packets in Table 2.8.1; see also Remark 2.16. We are working on a proof of this statement.
We will also prove a generalization of (2) that asks only that ¢ is s-conormal Definition 9.

0.6. Geometry and arithmetic. ABV-packet coefficients are defined by a microlocal analysis
of the moduli space of unramified Langlands parameters, following [CFM'21], building in
[Vog93]. As in [CFMT21] and [CFZ], we say that the infinitesimal parameter of a Langlands
parameter ¢ : Wy — LGy is Ay : Wp — LGy defined by A\g(w) = ¢(w, diag(|w|'/2, |w|~1/2)).
There is a natural moduli space for Langlands parameters with the same infinitesimal parameter
as ¢, introduced by Vogan and used extensively in [CFM™*21] and [CFZ|. This moduli space
is denoted by V), in this paper and it naturally carries an action of the reductive group
H,, ::Zé\2 (Ag); it is, in particular, a prehomogeneous vector space. In this paper we review
the bijection between simple objects in the category Per Hy, (Va,) equivariant perverse sheaves

on V), and irreducible admissible representations of G>(F) for which the Langlands parameter
has infinitesimal parameter \y4.

We show that the Aubert involution of admissible representations appears as the Fourier
transform of equivariant perverse sheaves on the other side of this bijection. We also show how to
recognize when a unipotent representation is tempered, Arthur type, unitary, generic, spherical
or supercuspidal purely in terms of the geometry of the corresponding simple equivariant perverse
sheaf. To explain this, we say that ¢ is open (resp. closed) if the Zg, (Ag)-orbit of ¢ is open (resp.
closed) in V), 5 1f wis tempered then its Langlands parameter is open but the converse is not true;
in this sense, the notion of open parameters generalizes the notion of parameters bounded upon
restriction to Wg. Returning to the claim that ABV-packet coefficients provide an extension of
the Langlands correspondence and Arthur packets, we also prove other fundamental properties
of ABV-packet coefficients in Theorem 2.2.

0.7. Notation. We will use "polar notation" y = ur® for complex characters y of F*, where
v : F* — C* is the unramified character defined by v(w) = ¢ and where p : F* — C* is
unitary and a € R. When subscripts are necessary, this notation becomes y; = p;v*. We will
use the notation 6,, for a fixed, unitary character of F'* of order n.

Similarly, we use the "g-polar notation" z = uq® for complex numbers z € C* where u is
unitary and a € R.

By abuse of notation, we also denote a fixed primitive complex n-th root-of-unity by 6,, and
write 9, for the corresponding character of (8,,) :={1,0,,...,07 "1}, so 9,,(6,) = 6,,. When the
order n is understood by context, we will write ¥ for this character.

We write € for the sign character of S3 and g for the reflection representation of Ss.

For a split group G over F with a fixed Borel B and torus T over F, we set [¢ (o) := Indggg (o),
where o is a representation of T'(F'), inflated to B(F'). Also, if P is a parabolic subgroup of
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G with Levi subgroup M, we set IS (o) —IndGEFg( ). When this induced representation is a

standard module, we write J (o) for its Langlands quotient and J§ (o).

For an algebraic group G over F, denote by 1 the trivial representation of G(F') and Stg
the Steinberg representation of G(F').

For representations of Go(F'), we follow the notations from [Mui97] except that the Steinberg
representation of GLy(F) is denoted by Stgr, instead of §(1) as in [Mui97]. There are 4
cuspidal unipotent representations Ga[l], Go[—1], G2[f3] and G2[f3] of G2(F,) appearing in
[Car93, p.460]. For such a cuspidal unipotent representation o of G5(F,), we also uses the
shorthand Iy(o) for cInd?Eg) )(0). These supercuspidal representations also appear in [CO17],
where they are denoted by vg = Io(G2[1]), v7 = Io(Ga[—1]), vs = Io(G2[63]) and vg = Io(G2[03]).
The last two of these also appear in [Sav99, Section 4|, where they are denoted by #'[v] and
7' [V2].

0.8. Acknowledgements. The authors gratefully acknowledge and thank Goran Muié¢ for
explaining his work on admissible representations of Go(F). The authors would also like to
thank all the members of the Voganish Project, especially Ahmed Moussaoui for patiently
answering our many questions.

1. GEOMETRY OF THE MODULI SPACE OF LANGLANDS PARAMETERS FOR Gy

1. Roots for G5 and é\g Let T be a fixed maximal split torus of G2, the corresponding set
of roots are denoted by R:= R(G3,T). We write W for the Weyl group for this root system
R. Let 71,72 : T — F* be a choice simple roots of Gy with ~; short and =, long so that the
positive roots R are

71,72, 71 + 25271 + Y2, 371 + 2,371 + 272.

The coroots are denoted RY := R(G2,T)V, with vy, 75 : F* — T the coroots of 71 and v2. We
fix the isomorphism 7" — F* x F* by

= ((2m 4 72) (@), (1 +72)(1))-
We use the notation m : F* x F* — T for the inverse of this isomorphism. We have
Vf(a) = m(aa ail)a and ’Y;(a) = m(la a)'

We denote by C/}’\g the dual group of G5 over C and T the dual torus and let R := R(é\g, f) be
the roots of é\g with the usual identification of coroots of G5 with roots of é; We again write
W for the Weyl group for the root system R. Denote by 4, € R (resp. A2 € ]:Z) the image of
vy (resp. 73 ) under this identification. Then G2 is a complex reductive group of type G4, with
simple roots 41, 72. where 4, is a long root of G2 and 4, is a short root of Gg As above, we fix
an isomorphism 7' — C* x C* by

t ((n+ 232) (1), (1 +32) (1))
and we write i : CX x C* — T for the inverse of this isomorphism. Note that we have
Alm(e,y) =2"'y?,  and  Ae((z,y)) =yt (4)
We will denote by 4,45 : C* — T the coroots of 41 and 4. We have again that
A (a) =m(l,a), A3(a) =m(a,a™t).

Observe that under the identification R(Gy,T) = R(Ga,T)Y, we have v = 4, 72 = 4Y,
(1+92)" = 30 +43, (11+292)" = 39 +29, (11+392)" = 7' +43 and (251+392)" = 29" +45.
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1.2. Moduli spaces of Langlands parameters. Set W} :=Wg x SLy(C). Given a Langlands
parameter ¢ : Wj — LGy its infinitesimal parameter Ay : Wrp — LGy is defined by Agp(w) =
¢(w, diag(|w]'/?, Jw|~1/%)).

For a given infinitesimal parameter A : Wr — “Gy, there are only a finite number of é\g—
conjugacy classes of Langlands parameters ¢ with A = \,. As explained in [CFM*21| more
generally, each unramified infinitesimal parameter A : Wr — “Gy determines a prehomogeneous
vector space

Ww={ze€ Lie G5 | Ad(AMw))z = qz,Yw € Wr},
equipped with an action of the group
Hy:={g € Gy | Nw)gA(w) ™! = g,Yw € Wr}.

acting via the adjoint action of é\Q on Lieé\g. Using this action we can assume that A\(Fr) € LT
and define . o

Ry = {’A}/ € R(G,T) | Lie Ufy - V)\},
where Uy C é\Q is the root subgroup for 4. Then V) is a moduli space for all Langlands
parameters ¢ with Ay = X and X := G2 x g, V) is a moduli space for all Langlands parameters

¢ for which Ay is (/?\g—conjugate to A. Note that (/;\2 acts naturally on X, while H) acts on V.
These notions lead to the following classification of unramified infinitesimal parameters A for

Go(F).

Proposition 1.1. For every unramified \ : Wr — LGy, the set Ry is W -conjugate to one of
the following subsets of R, also pictured in Table 1.2.1:

0 ]?o,\ =0; 5 -’?A = {¥2, %1 +92};

1 Ry ={%+2%}; 6 Ry ={%,% +3%};

2 Ry = {251+ 3%2}: 7 By ={%,%2}:

3 Ry = {#1,2% + 3%}; 8 Ry = {¥1,%1 + 92,91 + 292,91 + 342}

4 Ry = {51, % + 252}

Each case above determines a moduli space Vy of unramified Langlands parameters with
infinitesimal parameter \.

Proof. The possibilities for A\ are classified by the associated prehomogeneous vector spaces Vy
as they appear in Lieé\g up to @g-conjugacy.

Case 0 describes all A for which V) = 0. These are the A for which §(\(Fr)) # ¢ for every
root 4 € R. In this case the group H) is G or one of the subgroups SLs (C), SO4(C), GLI*(C),
GL3(C) or T, where U; C GL].

Cases 1 and 2 describe all A for which dimV) = 1; in these cases, V) = Span{X;} for
some root 4 of G and H, is either T or GLZ (C) for a root 4’ perpendicular to 4. Up to
@g—conjugacy, there are only two cases: either 4 is short or long; in Case 1 we consider the
short root 4 = 41 + 292, to which 4 is perpendicular, and in Case 2 we consider the long root
4 = 291 + 392, to which 49 is perpendicular.

Cases 3, 4, 5, 6 and 7 describe all A for which dim V) = 2; in these cases, V) = Span{ X5, X5/}
for roots 7 and X5/ of Gy and H, is either T or GL;Y0 for a root 4o such that 7' =7 + 7p.

If dim V), > 2 there is only one possibility for A and this is Case 8, treated in [CFZ]. When
dim V), > 2 this forces dim V), = 4 and that V) = Span{X5, X545,, X5+25,, X5+37, } for roots ¥
and 7g. The group that acts on V) in this case is Hy = GLZO. There are exactly six such V),
all G-conjugate to Span{Xs,, X5, 14> X5, 124> X5, 135, }, in which case Hy = GLJ>. O
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TABLE 1.2.1. The classification of unramified infinitesimal parameters A\ for
Go(F) in terms of the subsets Ry appearing in Proposition 1.1. Black root
vectors with a halo appear in Ry and so the corresponding root spaces form
V. Vectors in black without a halo determine root groups appearing in the
reductive group H) acting on V)

Case O lone 1 G, Core 2 Gl

K

Gy G2
~ 2. -3% .25 Ry 125,035
Py Y A 4 f 25
Care - 50, Cone 5+
A
G2

Cane & - Shs

(o 3

G»

R E R S TETA AR

1.3. Prehomogeneous vector spaces. This classification of infinitesimal parameters A for G
by the associated prehomogeneous vector spaces Hy x V\, — V), given in Proposition 1.1 may be
simplified further by examining the categories Perp, (V) that arise as A goes through the cases
appearing there.

Proposition 1.2. If A : Wr — LGy is an unramified infinitesimal parameter for Go(F) then
the category Perp, (Vi) is equivalent to Perpg (V) where H x V. — V is one of the following five
prehomogeneous vector spaces.

PO V =0 and H is an algebraic group, not necessarily connected (trivial action);
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P1 V = A with H = GL;-action given by t - x = tx (scalar multiplication);

P2V = A% with H = GLa-action h - x = det(h)"hz, for non-negative integer n (twisted
matriz multiplication);

P3V = A% with H = GL}-action (t1,ts) - (x1,20) = (t1z1, t1t3as), for positive integer n
(toric variety);

P4V = A* with H = GLg-action h -z = (det™' ®Sym®)(h)(z) = det(h)~" Sym®(h)z
(normalized Symmetric cube).

Proof. We begin the proof with a general observation. Suppose H actson V and let u: H' — H
be an epimorphism of algebraic groups with connected kernel. Let H’ act on V through u. Then
Perg (V) and Perg/ (V) are equivalent. To see this, recall that an H-equivariant perverse sheaf
on V is a perverse sheaf F equipped with an isomorphism p : m*F — p*F satisfying a so-
called cocycle condition. Consider the functor Pery (V) — Perg/(V) defined on objects by
(F,u) = (F,(u xid)*u) and on arrows by ¢ — . This functor is essentially surjective. Since
uxid: H xV — H xV is smooth with connected fibres of equal dimension dimkeru the
functor (u x id)* is full and faithful by, for example, [BBD82, Proposition 4.2.5]. Thus, Pery (V)
and Perg/ (V) are equivalent. We refer to this equivalence as an instance of base-change, below,
and in this case we will say that the prehomogeneous vector spaces HxV — V and H' xV —V
are equivalent.
The cases below all refer to Proposition 1.1.

(Case 0) The prehomogeneous vector space in Proposition 1.1, Case 0 is V' = 0 for a connected
group acting on 0, which is an instance of the prehomogeneous vector space P0. By the
base-change argument above, this is equivalent to PO for trivial group H.

(Case 1) There are two group actions appearing in Proposition 1.1, Case 1, either Hy, = T or
H,, = GLy. In the former case, observe that 41 + 292 : T - GL; is an epimorphism of
algebraic groups with connected fibre so, by the paragraph above, Perg, (V) is equivalent
to Pergr, (A!) for the prehomogeneous vector space P1. In the latter case, observe that det :
T — GL; is an epimorphism of algebraic groups with connected fibre so, by the base-change
argument above Pery, (Vy,) is again equivalent to Pergr, (A') for the prehomogeneous vector
space P1.

(Case 2) In Proposition 1.1, Case 2 there are two group actions to consider: either Hy, = T
or Hy, = GLy. Here, V), = Al. If H,, = T then the action is h.z = det(h)z. Using the
base-change argument above we have Perp, (Va,) = Pergr, (A1) since 241 + 39 : T GL;
is an epimorphism of algebraic groups with connected fibre. If Hy, = GLy then the action
is h- & = det(h)x. Then, using the base-change argument above, Pery, (Vi,) = Perar, (A')
since det : GLy — GL; is an epimorphism of algebraic groups with connected fibre. Thus,
Perp,, (Va,) is equivalent Pery (V) for the prehomogeneous vector space P1.

(Case 3) The prehomogeneous vector space in Proposition 1.1, Case 3 is Vy, = A? and H), =
GLo; this is equivalent to the prehomogeneous vector space P2 for n = 1.

(Case 4) The prehomogeneous vector space in Proposition 1.1, Case 4 is Vi, = A% and H,, = f;
this is equivalent to the prehomogeneous vector space P3 for n = 2.

(Case 5) The prehomogeneous vector space in Proposition 1.1, Case 5 is Vy, = A? and H,, =
GLg; this is equivalent to the prehomogeneous vector space P2 for n = 0.

(Case 6) The prehomogeneous vector space in Proposition 1.1, Case 6 is Vi, = A% and H,, = f;
this is equivalent to the prehomogeneous vector space P3 for n = 3.

(Case 7) The prehomogeneous vector space in Proposition 1.1, Case 7 is Vi, = A% and Hy, = f;
this is equivalent to the prehomogeneous vector space P3 for n = 1.
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(Case 8) The prehomogeneous vector space in Proposition 1.1, Case 8 is Vi, = A* and H,, =
GLg; as explained in [CFZ, Proposition 3.1], this is equivalent to the prehomogeneous vector
space P4. Category Pergr,(det™" ® Sym®) appeared in [CFZ|. O

1.4. The geometry of the moduli space of Langlands parameters. In this section we
make a microlocal study of the five prehomogeneous vector spaces appearing in Proposition 1.2.
In Section 2.4 we use this to determine the ABV-packets for G (F).

Let H x V — V be a prehomogeneous vector space. Let V* be the dual vector space to
V and let H x V* — V* be the adjoint action. Then H x H acts on T*(V) = V x V*
by (h,k) - (z,y):=(h - x,k - y) and T*(V) is also a prehomogeneous vector space. Now let
[ ]:V xV* — Lie H be the momentum map and consider the conormal variety

A={(a,y) € T*(V), [a,y] = 0}.

This Lagrangian subspace A C T*(V) carries the diagonal H-action h-(z,y):= (h-z,h-y). This
is a bundle of vector spaces with group actions: for each x € V', the fibre

A, = {y € V*7 [x,y] = 0}

caries a natural action of Zy(z). It is not always the case that A, is a prehomogeneous vector
space.

Proposition 1.3. If V is one of the 5 prehomogeneous vector spaces appearing in Proposi-
tion 1.2 then A is a bundle of prehomogeneous vector spaces.

When the conormal variety A to V is a bundle of prehomogeneous vector spaces, we write
ASre8 for the open dense Zp (x)-orbit in A, and AS® for the open dense H-orbit in A¢, for each
H-orbit C C V.

In this section we study the conormal varieties to the prehomogeneous vector spaces appearing
in Proposition 1.2. In each case we:

find all H-orbits C C V and all dual H-orbits C* C V*;

calculate each equivariant fundamental group A¢ :=mo(Zg(x)), for x € C;

enumerate the simple objects in Perg (V);

find the Fourier transform of each simple equivariant perverse sheaf on V;

show that the conormal variety A is a bundle of prehomogeneous vector spaces;

calculate the equivariant fundamental group Ag" of A3, for each H-orbit C in V;
calculate NEvsc, IC(L¢,) € Locy (Ascf:g) for every simple ZC(L¢,) in Pergy (V'), where NEws is
defined in [CFM 21, Section 7.10].

These geometric calculations, and their applications to representation theory, follow the ideas
presented in the examples treated in [CFM 21, Part II] and in [CFZ].

(P0O) Perg(0) is the category of finite dimensional representations of mo(H). Then A = 0 and
the functor Ews is the identity.

(P1) For the action of GL; on A! given by scalar multiplication there are two GLj-orbits: C_ =
{0} and its complement, C;. Then Pergr, (A!) has two simple objects, ZC(1¢,) = ]l!co [0],
the extension-by-zero of 1¢, and ZC(1¢,) = 1a1[1]. The conormal varieties are given as
follows. First observe that Ag = Tp(A!) 2 Al and Aj® = {y € A! | y # 0}; note that this
is a single orbit under the GLj-action. If z € C; then A, = {(x,y) | zy = 0} = {(z,0)}
which itself is a GLj-orbit. In this way we see that T (A')°¢ and Tg (A')¥°¢ are
both isomorphic, as GLj-spaces, to C; and consequently, equivariant local systems on
these spaces are naturally identified with finite-dimensional vector spaces. The functor
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NEvs : Percr, (A') = Locar, (g, (A')sreg) is given by the following table:
Pergr, (A') | Locar, (Age®) Locar, (Ag:®) | Fourier
IC(]lCo) IC(]lCH)
IC(1c, ) 0 Lpgres IC(1c,)

HASCSSg 0

(P2) For the twisted matrix multiplication action of GLy on A?, again there are only two H-
orbits, Cy = {(0,0)} and the complement C; and only two simple objects in Pergr,, (A?)
are IC(1¢,) = 1}, [0] and ZC(1¢, ) = 142[2]. Again, T, (A?)¥°8 and T¢, (A?)°8 are both
isomorphic, as GLg-spaces, to C, which is a single GLs-orbit and also has trivial equivariant
fundamental group. The functor NBws : Pergr, (A%) — Locar, (T¢ 1, (A%)seg) is given by

Pergr,(A?) | LocarL, (Age®) Locar,(Ag:®) | Fourier
IC(]lCO) ]lASCS(C)g 0 IC(]lCl)
IC(1c, ) 0 Lpgres IC(1c,)

(P3) Consider the action of H = GL? on V = A2 by (t1,t2).(z1, 22) = (t121, t1t5x5) for positive
integer n. There are four H-orbits in this case: Cy = {(0,0)}, C; = {(x1,0) | =1 # 0},
Cy = {(0,22) | z2 # 0} and the open orbit C3 = {(z1,22) | z122 # 0}. The equivariant
fundamental groups of these orbits are trivial with the exception of C3, for which A¢, is
the group of n-th roots-of-unity. There are 4 4+ (n — 1) simple objects in this category:
IC(1e,) = 1, Z0(1¢,) = 15 [1], ZC(1¢,) = 1, [1], ZC(1¢,) = 142[2] and ZC(Y¢, ), where
¥ is a non-trivial character of the group of nth roots-of-unity. For x € Cy or C'5 we have
A, = Cs which has a unique open GL?-orbit. For z € Cy, Ay = {((x1,0), (y1,12)) €
T*(V) | 2151 = 0} = {((21,0),(0,12)) | y2} = Cy which also has a unique GL3-orbit;
likewise for z € Cs, A, = Cy. It follows that Ac has a unique open H-orbit, A8, for
every H-orbit C C V. A simple calculation shows that the equivariant fundamental group
of Az® is the group (0,,) of nth roots-of-unity, for every H-orbit C' C V. The functor NEvs
is given by the following table, where the last row is removed if n = 1 and duplicated if
n > 2 for every non-trivial character ¢.

Pergrz(A?) | Locgrz (Ag®) Locgrz(AG®)  Locgrz(Ags®) Locgrz(Ag:®) | Fourier

ZC(1c,) Tppes 0 0 0 ZC(1¢y)
7C(1¢,) 0 Lyzes 0 0 7C(1¢,)
7C(1¢,) 0 0 Tpgpes 0 7C(1¢,)
7C(1¢y,) 0 0 0 Lyzes 7C(1¢,)
TC(Vcy) O peres I pores I peres D pgres TC(Vcy)

(P4) The functor NEws for H = GLy acting on V. = A% by hax = det™*(h) Sym®(h)(x)
(nomalized Symmetric cube) was calculated in [CFZ]|. We recall the result in the table
below, in which ¥ :=15 is the sign character of (f3) and, as explained in Section 0.7, € is
the sign character of S5 and p is the character of the reflection representation of Ss.

—

7C(1c,) L pres 0 0 0 C(1c,)
IC(1c, ) Opres Lpres 0 0 IC(ocs)
IC(]ICQ) 0 19A1;eg ]lAf_,eg 0 E(ICQ)
C(1¢,) 0 0 0 1 pzes C(1¢,)
IC(QCB) 0 0 19A;eg QAgeg ﬂz(]lco)
IC(ECS) EAgeg ]lArleg 19A;eg EAgeg IC(ECS)
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2. UNIPOTENT REPRESENTATIONS FOR (o

In this section we use the classification of infinitesimal parameters for Go(F') in Proposi-
tion 1.1, together with the results of Section 1.4, to enumerate all irreducible unipotent repre-
sentations of Go(F') and to find their Langlands parameters. In this way we give an explicit form
of the Langlands correspondence for unipotent representations of Go(F'). At the same time, we
will find the ABV-packet coefficients and start assembling the proof of Theorem 2.2.

2.1. The Langlands correspondence for unipotent representations of Go(F'). The
Langlands correspondence for unipotent representations of Go(F) is a special case [Lus95],

though the map II4(G2(F)) — //l; given there is normalized differently. Here we are mak-
ing our normalization of LLC such that it satisfies the desiderata of [GGP12, §9]. In particular,
it satisfies [GP92, Conjecture 2.6], which specifies the Langlands parameter of generic represen-
tations for a particular infinitesimal parameter. Moreover, for a choice of hyperspecial group, our
normalization also specifies the enhanced Langlands parameter of spherical representation for a
particular infinitesimal parameter, i.e., if 7 € II4(G2(F')) is spherical, then ¢ is trivial on the
SL2(C) part and the corresponding representation of 24) is trivial. This choice of normalization
agrees with the requirement in the work of Arthur [Art13].

The Langlands correspondence for unipotent representations of Gao(F’) is given in Table 2.1.1,
also in Table 2.5.1, making reference to the classification of unramified infinitesimal parameters
in Proposition 1.1 and the enumeration of unramified Langlands parameters for G(F') given
in Section 2.4. Both tables use notation from [Mui97] for irreducible admissible representations
of G2(F), modified as explained in Section 0.7. In Table 2.1.1, characters of Ay are listed in
the column with ¢ at the top and the L-packet II4(G2(F')) is found by gathering together the
representations 7 for which the character of A4 is non-zero, this defining the bijection

Iy (G2(F)) — Ay,

for all unramified Langlands parameters for Go(F).

There are precisely three non-singleton L-packets of unipotent representations of Go(F):
IIy,, (G2(F)), I, (G2(F)) and Iy, (G2(F)), of which the first has order 2 and the other two
have order 3. Note that the group Ay is trivial except when ¢ is ¢4, Pea Or ¢gq, in which cases
Ay is (62), (03) and Ss, respectively. These three Langlands parameters are all of Arthur type
and are distinguished by the fact that they have elliptic endoscopy, as explained in Section 4.

Recall that we have classified all unramified infinitesimal parameters for G5 (F’) in Section 1.2.
Working through the 9 cases in Proposition 1.1, in Section 2.4 we find, in each case, all Langlands
parameters ¢ with given infinitesimal parameter \. Using results from [CFM'21], we compute
the component group A4. We find that these groups are trivial in all cases except the unique
tempered Langlands parameter with infinitesimal parameters given by Cases 4, 6 and 8. In
all other cases, except these three, since Ay is trivial, we use the Langlands classification to
find the corresponding admissible representation and note that ITy(G2(F)) — Rep(Ay) is trivial
in these cases. This is done case-by-case in Section 2.4. It then remains to consider only the
Langlands parameters with infinitesimal parameters given by Cases 4, 6 and 8, specifically the
three tempered (i.e., bounded upon restriction to Wy) parameters denoted by ¢44, ¢deq and
¢sq. These three are of Arthur type and are lifted from Arthur parameters of elliptic endoscopic
groups, as explained in Section 4. We found the local Langlands correspondence for parameters
with infinitesimal parameter Ag in [CFZ, Theorem 2.5]. The local Langlands correspondence for
parameters with infinitesimal parameter A4 and \g is obtained by similar arguments.

2.2. Vogan’s version of the local Langlands correspondence. Let A\ be an unramifed
infinitesimal parameter of Go(F') and let IIy(G2(F')) be the set of (equivalence classes of)
irreducible smooth representations of G (F') with infinitesimal parameter A. Associated with A,
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TABLE 2.1.1. The local Langlands correspondence for unipotent representa-

tions of Go(F'). See Section 2.1 for how to read this table.
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we have the Vogan variety V) and the group H,. If ¢ is an unramified Langlands parameter
with infinitesimal parameter A, let C; C V) be the H-orbit corresponding to ¢. For use below,
we define dim(¢) := dim Cy and dim(7) := dim Cy when ¢ is the Langlands parameter for 7.
Let II4(G2(F)) be the L-packet of ¢, whose existence was proved in [Lus95]. Since Ay is
both the component group of ¢ and the equivariant fundamental group of Cy, the Langlands
correspondence, as presented in Section 2.1, now determines a bijection
L T4(Go(F)) — Locy, (Cp)Smple

/iso
such that £(m) corresponds to the representation ( ,m), of A,. Letting ¢ run over all L-
parameters with infinitesimal parameter A, this defines a bijection

P Iy (Go(F)) — Pergy, (Vy)5mple

/iso

such that P(m) = ZC(Cy, L(m)). We make use of this bijection in Section 2.4. In Case 8, this
bijection was made explicit in [CFZ].

Using the case-by-case calculations of Section 2.4, we have verified the Kazhdan-Lusztig
conjecture, as stated in [CFM ™21, Section 10.3.3], for G2(F'); this extends the result of [CFZ,
Section 2.10]. We have also confirmed that the Aubert involution, as calculated in [Mui97],
matches the Fourier transform of the corresponding simple perverse sheaves, using the bijection
above, for all unipotent representations of G5(F'), confirming the expectation of [CFM™21,
Section 10.3.4] and extending the result of [CFZ, Section 2.13].

2.3. A generalization of the component group of an Arthur parameter. We now
introduce the algebraic group S;” promised in the introduction.

Corollary 2.1. Let A : Wr — LGy be an unramified infinitesimal parameter for Go(F). Let
Vi be the moduli space of Langlands parameters with infinitesimal parameter A. The conormal
variety Ay is a bundle of prehomogeneous vector spaces over V.

Proof. Infinitesimal parameters A are classified by by the associated prehomogeneous vector
space V) in Proposition 1.1 and these in turn are expressed in terms of the five prehomogeneous
vector spaces in Proposition 1.2. In Section 1.4 we saw that the conormal variety of each of these
five prehomogeneous vector spaces all have the property that they’re bundles of prehomogeneous
vector spaces. [l

Definition 1. Notation as above. Let x be the point for ¢ in the moduli space V', where A is the
infinitesimal parameter of ¢. Let Ay be the conormal variety and recall, by Corollary 2.1, that
this is a bundle of prehomogeneous vector spaces above Vy. Set ;™ :=Z, & (@,y), where z € V
is a point in the moduli space V' that maps to the Langlands parameter ¢ and for y € A8
This variety is independent of the choice of y. Also set AJ™ :=mo(S,"), equipped with the
natural homomorphism va — A‘;BV. It follows immediately from [CFM™21, Prop. 6.1.1], ¢ is
of Arthur type 1, then S;;Bv =S8y.

Definition 1 is needed to find the ABV-packet coefficients (, ) : S x II}™ (G2(F)) — Q,
which we do in the next section.

2.4. Calculation of ABV-packet coefficients. In this section we calculate = — (,7) for
every unipotent representation m of Ga(F). The results are summarized in Table 2.4.1, in
which characters of Ay are listed in the column with ¢ at the top, classified by infinitesimal
parameters. We list the endoscopic groups for ¢ above ¢. ABV-packets I1;™ (Go(F)) are found
by gathering together the representations m for which the character of A3™ is non-zero.
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TABLE 2.4.1. ABV-packets and ABV-packet coefficients for unipotent repre-

sentations of G3(F'). See Section 2.4 for how to read this table.
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Definition 2. Let ¢ be an unramified Langlands parameter for G5 (F). Following [CFM™21],
we set

I, (G2(F)) := {7 € I\(G2/F)| Eve,(P(m)) # 0}
For s € §;™ and 7 € TI" (Ga(F)), ABV-packet coefficients are given by
(s,m) := traces NEvsc, P (7). (5)

In this definition we make implicit use of the homomorphism S;;BV — A‘;SBV.

Let A\ : Wgrp — é\g be an unramified infinitesimal parameter for Go(F'). Then X is determined
by A(Fr) = m(u1q™,u2q*) where u; and us are unitary complex numbers and a1 and ay are
real numbers. Then

No(w) = (™ ugr ) - (fw], [w|22)
= (23 +4) (g™ ™ w]®2) - (3 + 43) (urug 1)ord() p|22=ar),

Let x = x1 ® x2 : T'— C* be the dual character of A : Wr — T. By the above form of A\, we

~1l,a1—a2

know that x1 = pav®? and xo = pipy vV , i.e., X is given by

X = pav™ © ppy v, (6)
where p; is the unitary unramified character of F'* defined by p;(w) = u;.

(Case 0) Suppose ¢ : Wi — LGy is a Langlands parameter with infinitesimal parameter g
corresponding to Case 0 from Proposition 1.1. Then )y : Wp — 6\2 is an unramified
infinitesimal parameter such that dim Vy, = 0, so 4(A(Fr)) # ¢ for every root 4 € R; this is
Case 0 from Proposition 1.1. If we write A(Fr) = m(u14§, u2q®?) then this case is equivalent
to the condition

{ugul—lqngfal , u1u2—1qa17a2’ qua2’ ulq‘“ ’ u%u51q2a17a27u1u2qa1+a2} N {q, qfl} — @

In this case H) is the dual of an endoscopic group for 6'\2; so, besides é\g itself, Hy is SL3
or SO4 or one of the Levi subgroups GL;“, GL;"’ or T. For each such A, there is a unique ¢
with Ay = A, d.e., (w,z) = A(w). In this case, there is a unique Langlands parameter with
infinitesimal parameter Ay which is defined by ¢o(w,x) = Ag(w). If a1 = a2 = 0, then x;
and xo are unitary. Notice that there is a unique order 2 unramified character of F'* and
thus x1, x2 cannot be two distinct order 2 unramified characters. In this case, I(x1 ® x2) is
irreducible by [Key82]. If one of a;, ay is nonzero, then at least one of x1, x2 is non-unitary.
One easily translates the condition 4(A\g(Fr)) # ¢*!,V4 € R(é\g,f) to the conditions on
X1, X2, which are exactly the conditions of [Mui97, Proposition 3.1]. Thus, the induced
representation I(x; ® x2) is also irreducible by [Mui97, Proposition 3.1]. In both cases, the
unramified local Langlands correspondence says that 7(¢g) = I(x1 ® x2) and the L-packet
is a singleton. Here, ¢g(w, ) = A\g(w), given above. There are no stabilizing representations
to the irreducible I(x; ® x2). This is a direct consequence of the simple observation that
there is but one simple object in Perp, (V),); see also PO.

(Case 1) Suppose ¢ : W — LGy is a Langlands parameter with infinitesimal parameter \;
corresponding to Case 1 from Proposition 1.1. Then V), = Span{Xs,495,} and (291 +
392)(A(Fr)) = ¢ and 4(A(Fr)) # ¢ for every other 4 € R; in other words, ujus = 1 and
a1 +as =1 and

{u—3q2—3a’ u2q2a—1’ u—lql—a)uqa7u3q3a—l} a) {q7q—1} — @,

where uv:=wu; and a:=a; and Hy, = T if u?q?*~1 # 1 and Hy, = GL;1 if u2g?e—1 =1.
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The action of Hy, on V), is given by

m(x,y) . rXs, 425, = X5, 124, if u?g?2=t £ 1,
9rXs 425, = det(9)rXs,405,, ifu?g?* =1

This action has two orbits: the closed (zero) orbit and the open orbit. The corresponding
Langlands parameters are explicitly given by

P1a(w, ) = Ai(w), closed;
¢1b(w7x) = m(lvuord(w)|w‘a_1/2)b’%+2’?2 (1’), ope1l.

The simple objects in Perg (V) are described in P1 using the base-change argument in the
proof of Proposition 1.2.

By (6), the dual character of \; is x = ur® ® p~'v'=% where p : F* — C! is the
unramified unitary character determined by p(w) = w. We consider the representation
I(puv® @ p~tv1=2). In the Grothendieck group, we have

I @p~ =) = 1w ©v)
=L, (a—1/2, 1% (u'/? @ u=1/2))
= I’Yz(a — 1/27M® StGLg) + I,YQ(G — 1/2,/,6 o det)

By [Mui97, Theorem 3.1 (ii)], the two representations, I,,(a — 1/2, 1 ® Star,) and I, (a —
1/2, p o det), are irreducible. For these representations, the local Langlands correspondence
is given by

H¢1a(G2(F)) = {I’Y2(a_ 1/27M0det)}v

H¢1b(G2(F)) = {I'YQ (CL - 1/27 H® StGL2)}'

It follows that the equivariant perverse sheaf corresponding to I,,(a — 1/2,p o det) is
IC(1¢,,), where 1¢,, is the constant local system on Cj, = {0} in V = A! and the
equivariant perverse sheaf corresponding to I,,(a — 1/2, un ® Star,,) is ZC(1¢,, ), where 1¢,,
is the constant local system on the open orbit Cyp. Taking the case n = 1 of Section P1
and then using the base-change argument in the proof of Proposition 1.2, it follows that the
simple objects in Perg, (V) are ZC(1¢,,) and ZC(1¢,,) only, and that Ewsc,, ZC(1¢,,) = 1
and Bwsg,, ZC(1¢,,) = 1 while Bwsg,, ZC(1¢,,) = 0 and Bwsg,, ZC(1¢,,) = 0. Therefore, there
are no stabilizing representations for the L-packets above, and we have

Y (Go(F)) = Ty, (Ga(F)),
I (Ga(F)) = Ty, (Ga(F)).

These calculations follow from the results of Section P1.

(Case 2) Suppose ¢ is a Langlands parameter with infinitesimal parameter Ao from Case 2 of
Proposition 1.1. This case is quite similar to the previous case. The infinitesimal parameter
Ay is determined by Ao(Fr) = m(ug® u tq'~?) with u € C',a € R satisfying ... Then
Vi, = Span{Xos,+35,}. and Hy = T if u2q2e~1 %1, and H, = GLs 5, if u?¢?*~! = 1. The
action of Hy on V), is given by

ﬁl(m,y).er:lerg)% = xer2;Yl+3;Y2’ if u2q2a71 # 1,
91 X5, 435, = det(9)rXog, 435, if v’ =1

Tthis action has two orbits — the zero orbit and the open orbit — and each Langlands
parameter has trivial component group. Representatives for the two L-parameters are

P(w,z) = Ma(w)
Gop(w,x) = W |2 T o [ OFZ) s g, ().
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By (6), the dual character of Ay is =0~ ® p?v2%~1, where p is the unitary unramified
character of F'* determined by p(¢) = u. In the Grothendieck group, we have

I(#flyl a ®#2y2a 1) _ I(#Va ®#Va71)

=1y (a—1/2, 1612 (NVI/Q ® F“/_lm))

=1, (a—1/2,p® Stgr,) + I, (a — 1/2, p o det).
By [Mui97, Theorem 3.1 (i)|, the representations I, (a—1/2, p®Stcr,,) and I, (a—1/2, pi-det)
are irreducible. The Langlands correspondence is given in given in Table 2.5.1. Arguing as

in Case 1 or using our microlocal analysis of the prehomogeneous vector space P1, the ABV-
packet coefficients are given in Table 2.4.1.

(Case 3) Suppose ¢ is an unramified Langlands parameter with infinitesimal parameter A3 from

Case 3 of Proposition 3. We can take A\(Fr) = m(0q'/3,0%¢*/3) with 6 = 6% for n = 0,1,2
and Hy = GLJ'%. To see this note that 41 (A(Fr)) = ¢ and (251 + 3%2)(A(Fr)) = ¢ and
F(A(Fr)) # q for every other 4 € R, so if A(Fr) = m(u1¢™, u2q®) then uy = u? € {1, 05,62}
and a1 = %, ag = % The action of Hy on V) is det ® Sym', which is to say, h -z = det(h)ha
where hzr is matrix multiplication. This is case P2 for n = 1. In particular, there are
two orbits of this action: the zero orbit and the open orbit. The corresponding Langlands
parameters are given by

¢3a(w,$) = )\3(’LU),
¢3b(w7 l‘) _ m(eord(w) |w|1/3’ 02ord(w) |w|1/6) “13, (I)

By (6), the dual character of X is x = 9v%/3 @921 ~1/3 where ¥ is the unramified character
of F* dual to 6. In the Grothendieck group, we have
10507 @ 0370~ 1/%) = I, (1/6, 19" (030'/% @ 050~ 1/?))
=1, (1/6,6% ® Star,) + L, (1/6, 0% o det).
The Langlands correspondence is given in given in Table 2.5.1. Using our microlocal analysis

of the prehomogeneous vector space P2, for n = 1, the ABV-packet coefficients are given in
Table 2.4.1.

(Case 4) Let A4 be the infinitesimal parameter appearing in Case 4 of Proposition 1.1. Then

Ay (Fr) = m(q, —q) and Vi, = Span{Xs,, X5, 424, } and Hy, = T. The action of T on Vj, is
given by
m(z,y).(r1 Xa, +12X5,104,) = ¥220 11 X5, + 210 X5, 124,
There are 4 orbits: Ci, = {0}, Cup = {r1 X5, | r1 # 0}, Cac = {raX5, 425, | 72 # 0} and
Cuqg = {TlX’% + TQXR/1+2»3/2 | 71,79 75 0}
We find PerHM(V,\AL) in Proposition 1.2. In particular, there are four H),-orbits in

Vaet Cia = {0}, Cup = {rm X5, |11 # 0}, Cic = {raXs,424, | 72 # 0} and Cyq =V=
{r1Xs, +r2X5,424, | 11,72 # 0}. Corresponding Langlands parameters are given by

baa(w,z) = A w),

Gap(w, ) = w(|w], (=1) 1 w]/2) - 15, (),
¢4C(w,x) = m( ’( 1)ord w)|w|1/2) L’YH‘?’YQ(I')
Gaa(w,x) = (L, (=1)7 )05, (2)04, 125, (7).

Note that we have Ag,, = (m(1,—1)) = (f2) and the component groups of the other 3
Langlands parameters are trivial.
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The dual character of A4 is 02 ® 62 by (6). Recall that 05 is the unique unramified order
2 character of F*. By [Mui97, Proposition 4.1], we have

1(921/®92) = (1/2 02 ® Star,) +IW1(1/2 02 odet)

L,,(1/2,05 ® Star,) + I,(1/2, 05 o det), (7

and
15,(1/2,0, ® Star,) = w(62) +J T 1(1/2,62 ® Staw, ),
I1,,(1/2,0 ® Star,) = ( 2) + Jy,(1/2,05 ® Star, ), (8)
I,(1/2,650det) = (1,] 2(1®62))+ J,,(1/2,602 ® Star,),
172(1/2,920(16'5) = (1,[GL2(1®92))+J71(1/2,92®StGL2),

As in [Mui97], we write 7(62) for the unique irreducible sub-representation of I(f2r®65); note
that 7(62) is square integrable by [Mui97, Proposition 4.1]. and all of the above equations
are in the Grothendieck group of representations of Ga(F).

The proof of the Langlands correspondence ILy(G2(F)) — ;1; for all unramified Lang-
lands parameters for G3(F') with infinitesimal parameter A4 is similar to that of [CFZ, The-
orem 2.5|, which follows from some well-known facts. The Langlands correspondence is
Summarized in Table 2.5.1, here we only give some details of the proof of 7(¢sq,0) =
cInd o )(Gg[ 1]). Using [Lus84, p.270], the local system (¢4q,0) is cuspidal and thus

(¢4d, 0) is a depth zero supercuspidal representation of the form

Iy(o) —cIndG (0 )(0)

where o is a unipotent cuspidal representation of Ga(F,). There are totally 4 unipotent
cuspidal representations of G»(FF,) as given in [Car93, p.460]. To determine which one the
representation o is, we use the formal degree conjecture of [HII08], which is known in this
case by [FOS19]. Let ¢° be a fixed unramified additive character of F. A simple calculation
shows that the L-factor is given by

1
G+ )i+t )I—q 1)

and the epsilon €(s, paq, Ad, ¢°) = ¢'°1/275) Thus

L(87 ¢4da Ad) =

q9

100,010, AL ) = s

The formal degree conjecture asserts that

deg(o) _ dim(e)
W(G2(Or) ~ TAgud

where ©(G2(Op)) is the Haar measure of Go(Op) normalized as in [HII08], i.e.,
W(G2(OF)) = g~ M=) Gy(Fy)| = ¢ — 1)(¢* — 1).

|7(07 ¢4d7 Ada wo) ‘7

Thus we get
a(¢® - 1)(¢* — 1)
(@+1(g+1)
Comparing it with the 4 unipotent cupsidal representations of Ga(F,), we get o = Go[—1].
Using the microlocal analysis of the prehomogeneous vector space P3 for n = 2 from
Section 1.4, the ABV-packet coeflicients are given by in Table 2.4.1.

deg(o) =
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(Case 5) We now find the ABV-packets and coeflicients for Langlands parameters with infin-
itesimal parameter A5 from Case 5 of Proposition 1.1. The infinitesimal parameter As is
determined by A5(Fr) = m(q? ¢). In this case, we have V), = Span{Xs,, X5,44,} and
Hy, = GL;I. The action of Hy, on V), is equivalent to matrix multiplication, depending on
an isomorphism of GL]" with GL,. Category Pers, (Vi,) = Perar,(A?), with reference to
the prehomogeneous vector space P2 for n = 0. In particular, this action has two orbits: the
zero orbit C5, and the open orbit Cj,. Corresponding Langlands parameters are given by

¢5a (U}, x) = )‘5 ('UJ),
Psp(w,x) = mjw?, [w]*?) - 15, (2).

By (6), the dual character of A5 is ¥ ® v. In the Grothendieck group, we have

I(v@v) =L,(3/2,x("/?v71/?))
= I’Y2 (3/23 StGLz) + I’y2 (3/27 1GL2)~

The Langlands correspondence is given in given in Table 2.5.1. Using our microlocal analysis
of the prehomogeneous vector space P2, for n = 0, the ABV-packet coefficients are given in
Table 2.4.1.

(Case 6) ABV-packets and coefficients for Langlands parameters with infinitesimal parameter
Xg is determined by Ag(Fr) = m(63q,63q) from Case 6 of Proposition 1.1 are calculated as
follows. In this case, we have V), = Span{X},, X5, 434, } and H = T and the action of T on
V. 1s given by

T/ﬁ(l‘, y).(rlX:Yl + ’I“QX%_;,_;J,%) = y2x717‘1X:Y1 + z2y717‘2X:yl+3%.

Using the base-change argument in the proof of Proposition 1.2 we find that Peru,, (Vxg)
is equivalent to the category of equivariant perverse sheaves on the prehomogeneous vector
space P3 for n = 3. There are 4 orbits of this action: Cs, = {0}, Cep = {r1 X5, | r1 # 0},
Csec = {raXs,434,,72 # 0} and Csq = {r1 X5, + 12X5,434,,71,72 # 0}. Corresponding
Langlands parameters are given by

¢6a(w7x) )‘( )

dop(w,z) = (05 wl, 05 w|V/?) - 15, (2),
Poe(w,z) = m(@"“ w2, 057 wl) - 15, 435, (2),
Foa(w,z) = m(O3 " 92°Td(“”>¢xﬁ+xﬁ1% (),

where ¢x. +X71+372( z) : SLy(C) — é\g is a group homomorphism determined by the slo-
triple ( f, ) with e = X’Yl +X’Yl+3’7/27 f= 2X*’3’1 +2X—(’71+3’72) and h = 2H’Yl +2Hﬁyl+3%.
We find that Ag,, has order 3 and the component groups of the other 3 parameters are
trivial.

The local Langlands correspondence in this case is obtained by arguments similar to
the proof in case 4 and is given in Table 2.5.1. Using the microlocal analysis of the
prehomogeneous vector space P3 for n = 3 from Section 1.4, the ABV-packet coefficients are
given in Table 2.4.1.

(Case 7) Recall Case 7 from Proposition 1.1. The infinitesimal parameter \; is given by
A7 (w) = m(|w]?, |w|?). In this case, we have V = {r1 X3, +12X5, | 71,72 € C} and H,, = T
The action of Hy, on V), is given by

m(z,y).(r1 X, +12X5,) =20 r1 Xs, + 2y~ e X,
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This action has 4 orbits C7, = {0}, C7p = {ri1X5,,71 # 0}, Cre = {reX5,,72 # 0} and
C7q = {r1Xs, +r2X5, | r1,72 # 0}. The 4 corresponding Langlands parameters are given by

¢7a(w,x) = )\7(71]),

dro(w,x) = m(jwl?, |w]3?) - 15, (z),
dre(w,x) = mjw>?, |w*/2) - 14, (),
¢ra(w,r) = SDrEg(x)v

where ¢req 1 SLo(C) — G is the group homomorphism determined by the regular orbit, i.e.,
©reg is group homomorphism determined by an sly-triple (e, f, k) with e = X5, + X5,. Each
Langlands parameter has trivial component group.

The dual character of A7 is ¥?®@v. All of the representations of with infinitesimal Langlands
parameter \; are components of I(v? ® v). From the decomposition of I(v? @ v) given in
[Mui97, Proposition 4.4], we easily find the local Langlands correspondence in this case which
is given in Table 2.5.1. Using P3 with n = 1 we find the ABV-coefficients which are given
in Table 2.4.1

(Case 8) Case 8 from Proposition 1.1 was studied in [CFZ]. The Langlands correspondence is
given in Table 2.5.1 and the ABV-coeflicient appear as the last block of Table 2.4.1. We
remark that A(;Z\n = A‘;z\; = S35 and A;Eb = A;SZ\; = (69).

2.5. Fundamental properties of ABV-packet coefficients for G>. Let x4 be the point

for ¢ in the moduli space Vy,; let Cy be the Hy -orbit of x4 in Vy,. Pick y € Vy such that
(Tg,y) € Ta, (Vs )sreg- Then

AP = mo(T5, (Va,)s (26, 1))-

Let p: Tc*yé(VA¢) — Cy be projection. Then p induces the group homomorphism 7 (p, (z4,y)) :
(¢, (Va,), (24,y)) = m1(Cy, xy) which in turn induces a group homomorphism between the
equivariant quotients, A3"™ — Ay. Pre-composition with this group homomorphism defines the
map

Rep(A4y4) — Rep(A‘;BV)

appearing in Theorem 2.2.

Theorem 2.2. Let ¢ : W}, — LGy be an unramified Langlands parameter.
(LLC) The function m — { ,7) extends the local Langlands correspondence: for all unramified
Langlands parameters ¢ : W}, — LGy, the diagram

= ( ,m) T

I (Ga(F)) —= AT

I T (9)

(Mo
Iy (G2(F)) e Ay
commutes, where ﬁ resp. Ay ) denotes the set of characters of irreducible representations
) ) P ¢ 74
of A" (resp. Ag).
(Open) If ¢ : Wi — LGy is open or closed then m — ( ,m) is a bijection TIJ™ (Go(F)) — AJ™.
(Temp) If ¢ is bounded upon restriction to Wr then all the representations in I (G2 (F))
are tempered. If ¢ is not bounded upon restriction to Wg then H;BV(GQ(F)) may contain
non-tempered representations and { , ) may not be bijective.
orm representation m € 2 is spherical if and only if ¢ is closed and { ,7) is
N A ' II4(G2(F)) is spherical if and only if ¢ is closed and '
the trivial representation of Ay". In this case, the only ABV-packet that contains 7 is
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TABLE 2.5.1. L-packets and ABV-packets for all unipotent representations of
Go(F), arranged by the cases appearing Proposition 1.1. Each row gives an
ABV-packet, formed as the union of an L-packet and its stabilizing represen-
tations, called coronal representations in [CFM™21]. Notation and proofs are

C. CUNNINGHAM, A. FIORI, AND Q. ZHANG

presented in Section 2.4 drawing on results from Proposition 1.2.

Langlands L-packet Stabilizing
Parameter (aka coronal)
1) Iy (G2 (F)) Representations
[ % I(pav® ® pov™?) |

P1a I’YQ (a - 1/27 po det)
P15 I’Y2 ((l - 1/27 M StGLz)
$2a I, (a—1/2,p0det)
P2b I, (a—1/2, p® Stgr,)
?3.0 1,,(1/6,0% o det)
P3. I’Yl (1/67 eg ® StGLz)
b1a Ty, (1, 1972 (1 ® 62)) 1o(G2[—1])
Pap I (/2,02 @ Sta,) Iy(G2[—1])
Pac Jy2(1/2,62 ® StL,) Io(G2[—1])
P4d 7T( 2), 1o(G2[-1])
¢5a ’Yz (3/27 1GL2)
¢5b ’Yz (3/2 StGLQ)
P6a Jra (1 IGL2(93®9 ) 1o(G2[63]), In(G2(63])
bob J71(1/2 03 ® Star,) Io(Ga[03]), Io(G2[03])
boc Iy (1/2, 93®StGL ) In(Ga[63]), o (G2[03])
Pa 7(05), Io(Ga[05]), Lo(G2[03])
¢7a ]-G2
¢7b J’Yl (3/27 StGL2)
¢7C J’Yz (5/2’ StGLz)
P7d Sta,
95 ToLI(1 G 1) | Jo,(1/2 Stor,), lo(Gall)
bst 7, (1/2,Star,) (12, Star0), Io(Gal1])
Pse J’Yz(1/2 Star,) 7(1), Io(G2[1])
Psd m(1)', (1), Io(G2[1])

1" (Go(F)). A representation m € Ty (Ga(F)) is generic if and only if ¢ is open and ( , 7

is the trivial representation of Ay’

(Dwual) For every unramified Langlands parameter ¢ there is an unramified Langlands parameter
@, with the same infinitesimal parameter as ¢, such that the Aubert involution defines a

bijection

Proof. All these results follow from a study of Table 2.4.1 together with results from [Mui97].
(LLC) Table 2.4.1 shows that r : Rep(Ay) — Rep(A}") preserves irreducibility and is injective.
It follows from [CFM™*21, Theorem 7.10.1 (d)] that if 7 € II, then (,

LLC(w) € f/l; is the representation given by the local Langlands correspondence applied to

1" (Go(F)) — I (Go(F)).
The Zg; (Ag)-orbit of ¢ in Vx, is dual to the Zg; (Ay)-orbit of ¢* in V.

7. Alternately, this can be seen by comparing Tables 2.1.1 and 2.4.1.

7wy = r(LLC(x)) where
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(Open) In Cases 0, 1, 2, 3, 5 and 7, H‘;,BV(Gg(F)) — A‘;BV is a bijection since H;;)BV(GQ(F)) =
II4(G2(F')). Observe also that every Langlands parameter is either open or closed in cases
Cases 0, 1, 2, 3 and 5. Inspect Table 2.4.1 for Cases 4, 6 and 8.

(Temp) Note that when ¢|w, is bounded, then ¢ is open and IT}"(G2(F)) = I4(Ga(F)).
It follows from the previous explicit local Langlands correspondence that each II4(G2(F))
consists of tempered representations when ¢|y . is bounded.

(Norm) Recall the general fact that if P = M N is a parabolic subgroup of a reductive group G
over F' and if ¢ is an irreducible representation of M, then the parabolic induction Indg(a)
has a unique spherical component if ¢ is spherical and has a unique generic component if o
is generic. The assertion follows from this general fact. For example, in the Case 4, from (7)
and (8), we see that m(u) is generic and J,, (1, 7(1, 1)) is spherical. All of the other cases are
similar.

(Dual) The Aubert involution is computed in [Mui97]. The involution ¢ — ¢* is given by:
5 = P05 Pla = P16 P30 = 265 P5q = P3b; Phq = Pads Py = Pacs P5q = P55 Pa = Pods
D = Pec; Prg = Ord, Pap = Prc 5 Psa = Psds P5, = Psc. The result now follows from
Table 2.4.1. g

Remark 2.3. With reference to (Open), all unramified Langlands parameters of Go(F) are
either open or closed with the exception of ¢4, @4c, % P6cs Psp and ¢g.. For all but the
last two, 7+ ( , ) defines a bijection IIJ™(G2(F)) — Ay’ and in these two cases, the map is
surjective.

2.6. A geometric interpretation of Muic’s reducibility points. Many results of [Mui97]
on reducibility points of induced representations of Go can be explained by the geometry of
the action of Hy on V). The following corollary is a collection of previous discussions, which
explains the reducibility results of [Mui97, Proposition 3.1 and Theorem 3.1] using geometry.

Proposition 2.4. Let A : Wp — T — C/l\g be an unramified infinitesimal parameter with Vogan
variety Vy and the group Hy acting on it. Let x = x1 ® x2 : T(F) — C* be the character dual
to A\, which is determined by (6).

(i) The representation I(x1 ® x2) is irreducible if and only if Vi = {0};

(it) Suppose that Vy # {0}. Then we can write I(x1 ® x2) = Iy(s, p ® Stgr,) + Iy(s, i o det)
for v € {m,7}, s € C and a unitary character pu. Moreover, the two representations,
I,(s,u ® Stgr,) and I,(s, uo det), are irreducible if and only if the action of Hy on V)
has exactly two orbits.

Proof. Ttem (i) is a corollary of the discussion in Case 0, Section 2.4. If V) # 0, from the above
case by case study, we see that we can write I(x1 ® x2) as a sum, I (s, u®Stgr,)+1,(s, podet).
Note that in the cases in 1, 2, 5 and 3, the action of Hy on V) has exactly two orbits, and the
corresponding I(s, u®Stgr,) and I(s, podet) are irreducible. While in the cases in subsections 4,
6, 7 and 8, the action of Hy on V) has more than two orbits and the corresponding I(s, u®Star,)
and I(s, o det) are reducible. O

This corollary shows that how the geometry of the action of Hy on V) can determine the
representations, which is exactly the spirit of [CFM™21].

2.7. Unramified Arthur parameters for Gs.

Definition 3. Let us say that a Langlands parameter ¢ : Wr x SLo(C) — LGy is of Arthur type
if there exists an Arthur parameter 1) : W x SLa(C) x SLa(C) — £Ga, such that ¢ = ¢y, where
by (w, ) = P(w, z, diag(|w|"/?, |w|~1/?)). We say that an irreducible admissible representation
7w of Go(F) is of Arthur type if there is a Langlands parameter ¢ of Arthur type such that
7 € I (G2(F)); if such a ¢ exists, is generally not unique.
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Remark 2.5. If ¢ is of Arthur type then the Arthur parameter 1, above, is unique. If 7 is of
Arthur type then the Langlands parameter ¢, above, is generally not unique.

Remark 2.6. Definition 3 opens the door to a dangerous misapprehension. FEvery Arthur
parameter 1 determines a Langlands parameter ¢,; this function from Arthur parameters to
Langlands parameters is injective. We say that a Langlands parameter is of Arthur type if it lies
in the image of this function. On the other hand, an irreducible admissible representation is said
to be of Arthur type if it lies in an Arthur packet - typically more than one. It can happen that a
representation of Arthur type may have a Langlands parameters that is not of Arthur type. An
example of this phenomenon appears in [CFM ™21, Section 16]. Specifically, the Arthur packet
Iy, (SO7(F)) contains two representations, m; and 73 ; the Langlands parameter for 73 is of
Arthur type 12, but the Langlands parameter for 75 is not of Arthur type; see [CEM 21, Table
16.5.1]. Thus 75 is an Arthur type representations whose Langlands parameter is not of Arthur
type. On the other hand, this phenomenon does not happen for any unipotent representations
of G3(F) - see Corollary 2.9.

We now determine which unramified Langlands parameters for G5 are of Arthur type.

Proposition 2.7. Table 4.1.1 presents necessary and sufficient conditions for an unramified
Langlands parameter ¢ of Go(F') to be of Arthur type.

Proof. Note that 9|y, x{1}x{1} is bounded by definition of Arthur parameter. Moreover, we can
write Y(w,z,y) = ¥(w, 1, 1)Y(1,z,1)¥(1,1,y). The image of (1, x,1) and (1,1, y) is either 1
or a copy of SLy(C) in “G5. Observe that the images of ¥(w,1,1), ¥ (1,2,1) and ¥(1,1,y) are
commutative and both dy (1,(§¢),1) and d¢ (1,1,(3§)) are in V) with A = Xy, where dy is
the differential of .

(Case 0) In this case, we have ¢o(w,z) = Mm(ud ™ wd™)) . F(jw|®, jw|®2) with uy,uy €
C',a1,as € R and the Vogan variety is {0}. From the above observation, 1 (1,z,y) = 1.
Thus in this case, @q is of Arthur type if and only if ¢ (w,z,y) = ¢o(w,x) is an Arthur
parameter, which is equivalent to a; = ay = 0.

(Case 1) In this case, V, has dimension one. Let ¢ be an Arthur parameter with Ay = A;.
From the above observation, we get at least one of ¥(1,2,1) and (1, 1,y) is trivial. Sup-
pose that i1, is an Arthur parameter with ¢1, = ¢y,,. Then ¥15(1,2,1) = 15,424, (2)
and thus 915(1,1,y) = 1. Now the condition ¢1;, = ¢y, implies that ¢¥(w,1,1) =
(1, uo ) |w|*=1/2) with w € C';a € R, which is supposed to be bounded. Thus
we get a = 1/2. Note that, when a = 1/2, the corresponding Arthur parameter
Yip(w,x,y) = ¢1(w,x). It is easy to see that ¢, is of Arthur type iff ¢ = 1/2 and in
this case the corresponding Arthur parameter is given by ¥1,(w, z,y) = ¥1,(w, y, ).

(Case 2) This case is similar to Case 1 and thus omitted.

(Case 3) Recall that in this case, Vy is spanned by X5, and X5, 435,. Notice that these two
roots are not orthogonal to each other. Suppose that ¢g; is of Arthur type with Arthur
parameter 3. We have 9s5(1, 2, 1) = ¢35 (1, ) = 15, (). Since 133(1,1,y) is commutative
with ¢z, and (disp) (1,1, (4 1)) € Vi, we must have ¢3,(1,1,y) = 1. This implies that
Yap(w, 1,1) = ¢3p(w, 1) which is unbounded. Thus there is no such Arthur parameter and
¢s3p is not of Arthur type. Similarly, ¢s, is also not of Arthur type.
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(Case 4) Every Langlands parameter in this case is of Arthur type and the corresponding Arthur
parameter can be given explicitly,

)Ord(w))bﬁl (y)[’:}’\l +272 (y)’
1)Ord(w))l’§1 (x)L"Arl 4272 (y)a
) )i (y) (x)

Ly, \Y) 3,427, (L),

(Case 5) In this case, both parameters are not of Arthur type and the reason is the same as in
the case 3.

(Case 6) The Langlands parameters ¢g, and ¢gq are of Arthur type and the corresponding
Arthur parameters are given by

Yea(w, T, y) = ¢ea(w, ), Yea(w,z,y) = Yea(w,y, ).
The parameters ¢g, and ¢g. are not of Arthur type for the following reason. Suppose
that, for example, ¢g. is of Arthur type and the corresponding Arthur parameter is
6. Similar reason as above, ¥.(1,1,y) should be commutative with t5, 35, (x) and also
(dipsc) (1,1, (¢ 1)) should be in Vy,. One can check that such ¥g.(1,1,y) does not exist.
(Case 7) The situation is similar to the above case. The parameters ¢7, and ¢74 are of Arthur
type and the corresponding Arthur parameters are given by

w7d(waxa y) = ¢7d(w7x)7 ¢7a(w,$,y) = 7/)7d(w7y7$)'

The parameters ¢7; and ¢7. are not of Arthur type for a similar reason as in the last case.
(Case 8) All of the 4 Langlands parameters are of Arthur type as explained in [CFZ]. O

Remark 2.8. For a unipotent conjugacy class/\of @7 there is a corresponding a conjugacy
class of group homomorphism ¢ : SLy(C) — G2, which determines an Arthur parameter
by the formula ¢ (w,x,y) = ¢(y). There are totally 5 unipotent conjugacy classes of G, see
[GGO5, 2.7], for example. The Arthur parameters of these 5 unipotent conjugacy classes are:
o when u; = ug = 1 and a3 = as = 0 (corresponding to the trivial conjugacy class), 11,4
when u = 1 (corresponding to the unipotent conjugacy class of the short root, i.e., Ogpore in
the notation of [GGO05, 2.7]), ¥2, when u = 1 (corresponding to Ojong), Y74 (corresponding to
Oreg), and g, (corresponding to Osypreg)-

Corollary 2.9. A wunipotent representation m of Gao(F) is of Arthur type if and only if its
Langlands parameter is of Arthur type.

Proof. We have found all unramified Arthur parameters in Proposition 2.7. Using Table 2.4.1,
we find all unipotent representations of Arthur type. Using Table 2.1.1 we find the Langlands
parameters of these representations. Using Proposition 2.7 again, we find that these Langlands
parameters are all of Arthur type. O

Arthur has conjectured [Art89] that an irreducible admissible representation is unitary if and
only if it is of Arthur type. In Corollary 2.10 we firm this conjecture for unipotent representations
of G2 (F)

Corollary 2.10. A unipotent representation of Go(F) is unitary if and only if is of Arthur
type.

Proof. We use [Mui97] to find which unipotent representations are unitary. We use Proposi-
tion 2.7 and Table 2.4.1 to find which unipotent representations are or Arthur type. Direct
inspection reveals that these two sets are the same. O



26 C. CUNNINGHAM, A. FIORI, AND Q. ZHANG

Let ¢ : W} — LG5 be a Langlands parameter for G2 over F. We set dim(¢) := dim Cy. For
7 € II(G2(F)), set dim(w) := dim(¢,) where ¢, is the Langlands parameter for 7.

Proposition 2.11. If ¢ is an unramified Langlands parameter of Arthur type ¢ then SQBV =
70(Zg(¥)) and sy = sy :=1(1,1,—1) € ;" has the property

(84, m) = (=1 =dmm (g ),
for every m € TI™ (Ga(F)).

Proof. According to Definition 1, the value of (s, ), for any s € S,™, depends only on the image
of s under the map S™ — A", so we identify s with its image in the following argument. The
proof is based on a case by case consideration. If A™ = 1, this follows from that ( ,7) # 0
iff I, = {m}. The case 8 is considered in [CFZ|. Thus it suffices to consider the case (4), (6a)
and (6d). We only consider the case (6a) and omit the details for the other cases. Notice that
55,, = 1 while AJ™ has order 3 and thus (sea,T)gs, = (1,7)g, for all 7 € I . Thus it

suffices to check that (—1)dm(@se)=dim(m) — 1 for all & € II}" (Go(F)). Note that d(¢ea) = 0
and dim(7) = 0 or 2 by the description of II;;" . The result follows. O

Remark 2.12. Clearly, Proposition 2.11 is true for many Langlands parameters that are
not of Arthur type. For example, when A‘;BV = 1, Proposition 2.11 is true for s = 1, re-
gardless of whether ¢ is of Arthur type or not. However, there indeed exist ¢ for which
(—1)dim(@)=dim(™) (1 7) does not take the form (s, ) for any s € S,". Here is one example.

Let ¢ = ¢gp and m = cIndgzgg)F)(Gg [05]). Then ( ,m) = 93 according Table 2.4.1. Note that
dim(¢) = 1 and dim(7) = 2 and thus (—1)dm@)=dim(™) (1 7) — —1. On the other hand, we have
(s,m) = 3(s) € {1,05,63} . Thus (—1)dm@)=dim(m) (] 7} does not take the form (s, ) for any
s € 8%, in this case. The same is true for ¢ = ¢g. by a similar argument.

2.8. Distributions attached to ABV-packets.

Definition 4. For any Langlands parameter ¢ : W}, — XG5 and any s € S;;BV we define

O 1= > trace, (NBwc, [dim(¢)]P(r)[— dim(r)]) O (10)

wen‘;i‘”(Gg(F))
Using Definition 1 this takes the equivalent form

Ope= ., (F)IM@TID (s ) O (11)

rell™Y (G2 (F))

We will also use the notation @gz = @gzl

Proposition 2.13. If ¢ is of Arthur type ¢ then

B4 = > (sys,m) O (12)

T (G2 (F))
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Proof. Using Definitions 1, 4 and Proposition 2.11, we have

Qs = > traces (NEvsc, [dim(¢)]P(7)[— dim(r)]) O

Te™ (G2 (F))

= > trace, (NBvsc, [dim(¢)]P(7)[— dim(7)]) O
TV (G2 (F))

= > (—1)dim(@)=dim(m) trace, (NEwsc, P(7)) Ox
T (G2 (F))

_ Z (_1)dim(¢>)7dim(7r) <S7 7T> o,
rel}™ (Gs(F))

= > (sy 8,7) Or. O
Tell™Y (G2 (F))

The right hand side of (12) recalls the distributions used by Arthur for classical groups in
[Art13] and parameters of Arthur type. As we noticed in Remark 2.12; there are Langlands
parameters ¢ for which the conclusion of Proposition 2.11 does not hold. Thus Definition 4
provides a generalization of the distributions used by Arthur. In the the next result we will try
to justify that it is indeed the correct generalization.

In order to state the next result, let us say that a Langlands parameter for Go(F) is elliptic if
it does not factor through the L-group of Levi subgroup of Go(F'). We will discuss endoscopy for
Go(F) in Sections 3 and 4. We simply enumerate the elliptic Langlands parameters for Go(F)
in Table 2.8.1 . The representations appearing in these L-packets are elliptic in the sense of
[Art93].

TABLE 2.8.1. Elliptic representations of Gz (F)

L-parameter | L-packet = ABV-packet endoscopic | Component groups
¢ I1,(G2(F)) = 11" (G2(F)) |  groups Ay = A"
Pad m(02), Io(G=2[—1]) SO4 (02)
P6d 7(03), Io(G2[03]), I0(G2[63]) | PGLs (05)
¢4 Sta, Go 1
(]5gd 7'('(1)’,71’(1),]0(6‘2[1}) SO4,PGL3 S3

Theorem 2.14. For any unramified Langlands parameter ¢ for Go(F), recall Sgnv from, Defi-
nition 1 and © o from Definition 4, for s € SgBV.

(Basis) The span of the distributions
@4)"8 _ Z (71)dim(¢)fdim(ﬂ') <S,7T> O, s€ S;;BV’
rell}™ (Ga(F))
is equal to the span of the distributions ©, as m ranges over 11" (Ga(F)) if and only if

" (G2(F)) — Ay is a bijection. In this case, the inverse of the linear system of equations
above is

e = -1 dinl(C;)fdim(w)ﬂ 0 . HABV G (F
" ZBV( ) |ZAABV(S)‘ 85 e [ ( 2( ))7
sEA, ®

where ¢ is a Langlands parameter for w, the sum is taken over representatives s of the
fibres of S;BV — A‘(;BV and where dim(C;) is the dimension of the s-fixed points of the orbit
Cy C Vi,. More generally, if 7 is a unipotent representation of Go(F) then its distribution
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character ©r can be written as a linear combination of the distributions © , ., by letting ¢
range over unramified L-parameters for Go(F') with the same infinitesimal parameter as ,
and letting s € 8™ range over a set of representatives for the fibres of S5™ — AF™.

(Stable) Suppose Oy is stable when ¢ is elliptic. Then O is stable for all unramified ¢.
Moreover, these distributions form a basis for the space of stable unipotent distributions,
letting ¢ range over unramified L-parameters for Go(F).

Proof. Let ¢ be an unramified Langlands parameter for Gy (F).

(Basis) T, (G2(F)) — A" is a bijection in all cases except when ¢ = ¢g, and ¢ = ¢g..
Moreover, Ag™ is trivial unless the infinitesimal parameter for ¢ is given by Cases 4, 6 or
8. Accordingly, there are precisely 10 non-trivial cases of the first claim: ¢44, Pap, Pac, Pad,
P6a, ngGb,quSec, D6d, Psq and @Pgq. Qonsider the first of these cases, namely ¢ = qﬁﬁa. Recall
that Ay = (f3) and let s3 € 82[;1 be a representative for 03 above 8352 — A’;[;\a Then

@¢6a = @‘"(l%a) - @7"(¢de193) - @77(2¢>5d,19§)
9¢6a,33 = @"T(l%a) - 9?2’@7"(%(17193) - 0397r(¢»6d,19§)
6¢6a;3§ = @""(‘%a) B 93@7"(¢6dﬂ93) - 93®W(¢'ed,19§)7

where 7T<¢6a> = J72(17 JGL2 (93 ®0§1)), 7T(¢6d7 ’193) = IO(G2 [93}) and 7T(¢6d7 19%) = [O(GQ[Q%])
The transition matrix for this system of equations is the product of the matrix for (s, ),
which is the character table for A;]:a = (03), and the diagonal, self-inverse matrix of signs
(_1)dim(q§)—dim(7r):

1 -1 -1 1 1 1\ /1 0 0
1 —60; —02| =1 63 62| [0 -1 0
1 —602 —0y 1602 65/ \o 0 1
So,
1 -1 -1\ " 0 0\ /1/3 1/3 1/3

1
1 —6; —062 =10 —1 0| (1/3 65/3 63/3
1 —03 —63 0 0 1/ \1/3 0%/3 03/3

To see the formula for the inverse given in the Theorem is correct, it only remains to verify
that the diagonal entries in the first matrix are given by (—l)dim(C;)*dim(c’*), which is done
case-by-case. All the other case follow by the same argument. We illustrate a non-Abelian
case, ¢ = ¢gq, for which A’%BS\; = S3. Let s and s3 be representatives for the two non-trivial
conjugacy classes in S3, of orders 2 and 3, respectively. Then

®¢>8d = 677(458(171) + 267"(¢8d79) + 67"(¢8d75)
®¢8d,82 = 677(¢8d,1) - @W(¢8d75)
®¢8d753 = 977(%(1’1) - @ﬂ(ﬁbsdv@) + 6ﬂ(¢sd’€)’

where 7(dsq,1) = 7(1), 7(¢sga, 0) = 7(1) and 7(¢sga,e) = Io(G2[1]). The matrix for this
system of equations is the character table for S3. The two examples above illustrate that
both the complex conjugation and the denominator |Z ,asv(s)| are needed for Ga(F).

)

Note from Table 2.4.1 that H?;BV(GQ(F)) — A/ffv is a bijection for all unramified Lang-
lands parameters for Go(F) except ¢ = ¢gp and ¢ = ¢g.. For ¢ = g, we have A} = (6)

Psp
and, after picking representative for 6y above S, — A", we find
O4s, = Ones) = On(ose) T On(ssare)

Qs = Onos) — 020x(s5.) T On(esase)
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where m(¢gp) = Jy,(1/2,Stcr,), m(dse) = J1,(1/2,Stqr,) and, as above, m(¢sq,e) =

In(G2[1]). While it is not possible to express Or(¢y,)s Or(es,) aNd Or(4,) as a linear

combination of @¢8b and @¢8b,$2, we can write Or(g,,.0) in terr.ns of ®¢8d s © s, and

@¢8d753, as above, and then express O (g, ), Or(¢g,) aNd Or (4, in terms of ®¢8b, @¢8b,52,
$sa ?  Psd;S2 and 6¢’8d133' o . . .

The case ¢ = ¢g. is similar in that there are more representations in the packet
IT;" (Go(F)) than there are conjugacy classes in Ay, but again, we can write all the
distribution characters for representations in IT;" (G2(F')) using the distributions ©,, and
Ogg.,s, together with the distributions G4, O, ,s, and O, 3, as above.

(Stable) This follows from calculations that are made by working through the classification
of unipotent representations of Go(F') appearing in Section 1.2. In Case 8 this is [CFZ,
Theorem 2.16]. We give the details here of the proof in case 6. By [Mui97, Proposition 4.2],
in the Grothendieck group of representations of G5(F'), we have

M(psa) = 1(v83®03) =7(ded, 1) + m(Ps1) + T(P6c) + T(P6a),
M(pen) = I,(1/2,05" ® Star,) = m(deda, 1) + 7(deb),
M(psc) = 1,,(1/2,03 ® Star,) = m(dea, 1) + 7(dsc),

where M (¢) means the standard module of 7(¢) for a Langlands parameter ¢. From the
expression of ©4 for each ¢ appeared in the proof of last part, we easily see that

© 6. I =1 -1 1Y\ [Owmee
Ope | _ |0 1 0 —1|[On(ps
@¢6c 0 0 1 -1 6M(¢Gc)
O 00 0 1 Oy,

Note that each standard module is stable since it is a representation either induced from
GL2(F) or T'= GL1 (F') x GL1 (F). This shows that if ©,_ is stable, then each © , is stable
for every ¢ in Case 6. For the rest cases, the proof is similar and thus omitted.

0

Remark 2.15. The appearance of dim(C’;) in Theorem 4.7 is a foreshadowing of the geometric
constructions in Section 4 on geometric endoscopy.

Remark 2.16. It is widely expected that ©  is stable when ¢ is elliptic, but it seems that this
has not been proved; see [CFZ, Remark 2.17]. Note that, if confirmed (Stable), could then be
strengthened to: ©, is stable for all unramified ¢.

3. UNIPOTENT REPRESENTATIONS OF ENDOSCOPIC GROUPS FOR G

3.1. Endoscopic groups for Gs. Let (G, s,£) be an endoscopic triple for Go. Since s € (/;\2 is
semisimple we choose s € T'. Since Zg; (s) is connected, G is split over F' and ¢ : LG — LGy is

given by ¢ : G = Zg(s) = Ga; see [KS99, (2.1.4a) and (2.1.4b)]. In this way we see that the
endoscopic triple is determined by the pair (G, s). The endoscopic triples for G5 are naturally
arranged into the following six families, of which the last three are elliptic.
(T) G =T = GL?, s = m(z,y) regular, 9> # 1, ay~ ' # 1, 2 # 1, y # 1, 22y~ #1,
Ty # 1

(AS) G =CGLY, s =z, z), 22 # 1;

(A)) G =GLY, s=m(z2z), 22 # 1, 2% £ 1;

(D2) G = S0y, split over F, s = (1, —1);

(Az) G= PGLg, s = m(@g,eg),

(G2) G = Gy over F (necessarily split), s = 1.
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TABLE 3.1.1. Endoscopic relations for Ga. The dotted arrows G --» G’
indicate that G is an endoscopic group for G’ and therefore the existence of
an injective admissible homomorphism ¢ : “G' — £G’. There T" is the form of
the torus T = GL% that splits over the quadratic unramified extension of F'.

Go(F)
///7 r\\\
PGLS(F) <----- PGLs3(F) SO4(F) ----- + SO4(F)
’// /\N ,’/5' /\NN\
o 3 AN
PGL; (F) | BN
GL3' (F) GL*(F)
F\\\ //,‘r N
) — T'(F)

In Sections 3.3, 3.4 and 3.5 we study the unipotent representations of GLy, SO4 and PGL3 and
their inner forms, respectively, including the Langlands correspondence and ABV-packets for
these representations.

We will also study distributions on these groups attached to ABV-packets, for which we
require the following definition, related closely to [CFM ™21, Definition 3.

Let (G, s,&) be an endoscopic triple for G5. Recall from [CFM™21, Section 8.1, Definition 1]
that 1™ (G/F) is a subset of IT?"**(G/F), thus contained in the set of equivalence classes of
irreducible admissible representations of G(F') and all its pure inner forms. Let § € Z'(F,G) be
a pure inner form of G recall that G® denotes form of G determined by the image of § under
ZYF,G) — ZY(F,Aut(G@)). Now let ¢ : Wi — LG be an unramified Langlands parameter.
With is possible that the L-packet ®,(G?(F)) is empty, since we have not demanded that the
Langlands parameter ¢ : W, — LG is relevant to G(F) in the sense of [Bor79, Section 8.3 (ii)].
If ¢ is relevant to GO(F), then ®4(G?(F)) is non-empty.

We write IT;™(G°(F)) for the subset of IT;"(G/F) that contains only representations of
G°(F). Again, it is possible that IT)"™(G°(F)) is empty when ¢ is not relevant to G°(F).

Definition 5. Let ¢ : Wj, — “G be an unramified Langlands parameter such that s € Sgoy Set
05, :=e(d) > trace, (NEwy[dim(¢)]P(r)[~ dim(r)]) Ox.
rell®v(Go(F))

When written using ABV-packet coefficients for G° using Definition 1, the definition of @gi,
above, takes the form:

s im —dim (7w
0F., =e(9) oo (-ptim@mdm) (5 1) O
rell}™ (G9(F))

We also set @gé = @gi

3.2. Unipotent representations of T' = GL%. Unipotent representations of T'(F) are simply
unramified characters x; ® x2 : T(F) x C*. The Langlands parameter for this character is
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Wi, — T defined by (w,z) — ¢1(w) X @2(w) where @; corresponds to y; under class field
theory.

3.3. Unipotent representations of GL,. The category of unipotent representations of the
group GLo(F) is precisely the category of unramified principle series representations of GLo(F),
corresponding therefore to the subcategory of smooth representations of GLy(F') appearing in
the Bernstein decomposition indexed by the inertial class of the trivial representation of T'(F).
In particular, there are no supercuspidal unipotent representations of GLy(F'). In this section
we partition the set II(GLa(F))unip of unipotent representations of GL2(F’) into L-packets and
also describe the corresponding L-parameters, thus giving the Langlands correspondence for
these representations. Since this case is very well known, we omit all proofs here.

TABLE 3.3.1. L-packets for unipotent representations of GLo(F): each row in
an L-packet. The notation and the corresponding L-parameters are explained

below.
L-parameter L-packet Arthur
) IT4(GLo(F)) type?
$3.3.0 ‘ Indgif}f)(m ® x2) ‘ unitary xi, x2 ‘
$3.3.1a (xodet) ® 1gr, | unitary x
$3.3.1b (x odet) ® Stgr, | unitary x

We fix the standard maximal split torus T(F') of GLy(F'). Let By(F) be the standard Borel
subgroup of GLa(F).
3.3.0 Let x1 and x2 be unramified complex characters of GL;(F) = F* and let x1 ® x2 be the
associated character of T'(F). Then the parabolically induced representation

.= Ind &2

I (X1 ® x2) Bo(F) (X1 ® x2)

is irreducible if and only if X1X2—1 # v where v is the unramified character of GL;(F)

defined by v(w) = ¢. In this case, Indg?}g)(xl ® Xx2) is its own L-packet. The L-parameter

¢ Wp — @ for this irreducible representation is

$3.3.0(w,7) = <tp1éw) @2(()111))

where ¢; : Wp — CTI_Tl is the character corresponding to x; : GL1(F) — C* under local class
field theory. This L-parameter is of Arthur type if and only if x; and y2 are unitary.
3.3.1 Now suppose x1 and Yy are unramified and Xlxgl = v. Then we may write y; = yv'/?

and xo = XV_1/2, in which case
GLo(F _ QLo (F B
IndefIg) (w2 @ v 2) = (y o det) ® Inde(alg) YWV2 @ v/,

The unique irreducible sub-representation of Indgi“(zlg) (v*/2@v~1/2) is the Steinberg represen-

tation, Stgr,, whereas the trivial representation, lgr,(r), is the unique irreducible quotient.
The L-parameter for (y o det) ® g, (r) is

1/2
$3.3.10(w, ) = ©(w) <|wl) |w|01/2> )
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where ¢ : Wp — C* is the character corresponding to y : F'* — C* under class field theory.
The L-parameter for (x o det) ® Stgr, is

¢3.3.10(w, ) = p(w).

Both L-parameters appearing in this case are of Arthur type if and only if x is unitary. We
remark that (x odet) ® Lgp,(r) and (x o det) ® StgL, are interchanged by Aubert-Zelevinski
duality.

This completes the description of the Langlands correspondence for unipotent representations
of GLy(F). Each L-packet for GLy(F) is its own ABV-packet.

Remark 3.1. The category of unipotent representations of GLa(F’) is equivalent to the category
of modules over the affine Hecke algebra for GLy(F') that are finite-dimensional over C. As such,
Table 3.3.1 lists the simple objects in this module category.

Theorems 2.2 and 2.14 are largely trivial in the case of GLy(F) so we refrain from stating
them here except to say that [CFMT21, Conjecture 1] is true for unramified representations of
GLy(F).

3.4. Unipotent representations of SO, and its pure inner forms. In this section we find
the ABV-packets and ABV-packet coefficients for all unipotent representations of PGLj3 and its
pure inner forms. The p-adic group SO4 has two pure inner forms, both inner, since H!(F,SO,)
has order 2 and

H'(F,S04) — H'(F, Aut(S0,))

is injective. Let 6 € Z1(F,SO,4) be a representative for the non-trivial class in H!(F,SOy). Let
SO§ be the inner form of SOy attached to this cocycle. We partition the set TI(SO4(F))unip of
unipotent representations of the split orthogonal group SO4(F') into L-packets and also describe
the corresponding L-parameters. We do the same for the non-split inner form SOi of SO4. The
group SOZ is the orthogonal group for the quadratic space coming from the norm on the unique
quaternion division algebra over F.

TABLE 3.4.1. ABV-packets for all unipotent representations of SO4(F') and its
inner form SO} (F)

L-parameter pure L-packet stabilizing parameter of
o 117" (S04 /F) representations | Arthur type?
[ 340 | 159 (x1 ® x2) \ | unitary x1, x2 |
[ dsa0 | T4, ) | [ ves |
$3.4.1a I, (x o det) unitary y
®3.4.10 I, (x ® Str,) unitary x
$3.4.24 I3, (x o det) unitary y
$3.4.20 Is,(x @ StgL,) unitary x
$3.4.3a XS04 (F) Xso3(F) yes
®3.4.30 Js,(1/2,x ® StaL,) XS08 (F) yes
$3.4.3¢ Jp,(1/2,x ® Star,) XS08 (F) yes
$3.4.3d Xs04(F) ® Stso4; Xs03(F) yes
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3.4.1. Langlands correspondence. The local Langlands correspondence for SO4(F') should be
well-known, but since we could not find the appropriate references, we briefly explain how the
local Langlands correspondence follows from known cases.

We start with the observation that GSO4(F) = (GL2(F) x GLo(F))/A(F*), see [GP92,
(15.1)] for example, and therefore the local Langlands correspondence for GSO4(F) follows
from that of GLa(F). By the general theory of [GK82] and [GT10], the local Langlands corre-

spondence for SO4(F") can be obtained in the following way. Notice that GS/ORF) = GSpiny (C)

—

and SO4(F) = SO4(C). Let std : GSpin, (C) — SO4(C) be the standard homomorphism. Let
¢ : WrxSLy(C) — SO4(C) be alocal Langlands parameter for SO4(F) and let ¢ be a local Lang-
lands parameter for GSO4(F) such that stdo ¢ = ¢ and let II;(GSO4(F)) be the corresponding
local L-packet for GSO4(F), which is a singleton. Assume that II5(GSO4(F)) = {7}. Then
T|so, is multiplicity free and I14(SO4(F)) = JH(7), where JH(7) = {constituents of 7|go, ()}
Consider the subgroup F* -SO4(F) C GSO4(F), we have GSO4(F)/(F*-SO4(F)) & F* /F*:2,
By [GK82, Lemma 2.1|, we have

4 (SO4(F))| = {x : F*/F*? - C* 7@ x =7}

This allows us to find the local Langlands correspondence for unipotent representations of
SO4(F) explicitly, as follows.

We realize GSO4(F') and SO4(F) as GSO4(F) = {g € GL4(F) : g"'Jg = X\ (9)J, \(g) € F*},
and SO4(F') = {g € GSO4(F) : A(g) = 1}, where

0 0 01
0 010
7= 01 00
1 000
We denote the two simple roots of SO4 (and GSO4) by £ and B2 and let r — x4, (r) be the one

parameter subgroup associated with (;, which can be realized as

1 » 0 O 10 r» O
010 O 01 0 —r
LBy (’I“) = 00 1 —rl T By (T) = 00 1 0
000 1 000 1
For i = 1,2, the simple root §; define an embedding ¢s, : GL2(F) — GSO4(F') which can be

explicitly described as

a b 0 0 a 0 b O

a b\ [c d 0 0 a b\ [0 a 0O -=b
\\e d)) oo a | *2\\c d)) " |ec 0 d 0
0 0 — d 0 —c 0 d

Note that A(es,(g9)) = det(g) for g € GLo(F'). In particular, tp, defines an embedding ¢g, :
SLa(F) — SO4(F). Moreover, the map tg;, define an isomorphism GSO4(F) = (GLo(F) x
GL2(F))/(A(F*)), where A(F*) = {(a,a) : a € F*} C GL2(F) x GLo(F). Thus an irreducible
representation of GSO4(F) is of the form 7 K o with wy, - w., = 1, where 7; is an irreducible
representation of GLy(F') and w,, is the central character of ;. Let x be a character of F'*, we

G _
denote 1612 (y) = IndeiiF) (x®x™1).
Let Tso, be the maximal torus of SO4(F') which consists of elements of the form t(a,b) :=
diag(a,b,b=1,a~!) for a,b € F*. Let Bso, be the upper triangular Borel subgroup of SO4(F).

Let x1,x2 be a pair of characters of F*. We denote x; ® x2 the character of Tgo, defined
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by x1 ® xa(t(a.b) = x1(a)x2(b). Denote I50%(x; @ x2) =Ind§04" (1 @ y2). Note that

I594(y; ® x2) = I594(x3 ® x1) in the Grothendieck group of representations of SO4(F).

The group SO4 has 2 maximal torus P; = M;N; with zg, € M; for i = 1,2, where M; is the
Levi subgroup of P;. Note that M; & GL2(F). Let o be an irreducible smooth representation
of GLy(F) 2 M;. Denote Ip, (o) := Ind3 4" (o).

The dual group SO4(C) is realized in a similar way as SO4(F') described above. In particular,
if we call Bz the root of SO4(C) which is dual to f;, then the root space x5 is described
using the same matrix as @g,. Similarly, 5 defines an embedding SL3(C) — SO4(C). Denote
t(a,b) = diag(a,b, b=, a~") € SO4(C).

3.4.0 Let x; and yo be unramified characters of F'* with y1xo, X1X2—1 # v+ we consider the
representation 1594 (y; ® x2). Then

5% (x1 @ x2) = (I9%2(x}) B I (x4))|s04(F),

where X1, x5 are unramified characters of F* such that x1 = x]x5, X2 = x4/x}. We remark

that (x}, x5) are uniquely determined by (x1, x2) up to a twist by 65, where 65 is the unique

unramified quadratic character of F’*. There are two cases to consider.

(i) Suppose (x1,x2) # (62,1) and (x1,x2) # (1,62). Then the representation 15°4(y; ® x2)
is irreducible. The Langlands parameter is given by

¢3.4.0(w, z) = t(p1(w), pa(w)),
where @; : Wgp — C* is the character dual to x;, and

gy 40 (SO4(F)) = {1 (xa ® x2) }-

The moduli space of Langlands parameters with the infinitesimal parameter A3 4.¢ for ¢3.4.0
is P0: Vi, ,, = {0} and where H,, , , is equal to: GLs, when exactly one of ©1@a, 0105 "
is 1; SOy, when 199 = o195t = 1; T = GL7 in all other cases where (1, pa) # (62,1)
and (1, 92) # (1,62).
(ii) Suppose (x1,x2) = (62,1) or (x1,x2) = (1,62). Then
ISO4(92 ® 1) — ISO4(1 ® 92)

and this representation is a direct sum of two irreducible tempered representations of
SO4(F). We denote these two representations by 74 and 7. Only one of 74, 7 is SO4(Op)-
spherical, i.e., has a nonzero vector fixed by the hyperspecial group SO4(OFp), where Op
is the ring of integers of F', and we choose notation so that 74 is SO4(Op)-spherical. The
Langlands parameter for 4 and 7 is

P3.0.0 (w, ) = H(p1(w), pa(w)),
where @; corresponds to x; under class field theory. and
Iy, , o (SO4(F)) = {my, my}.
The moduli space of Langlands parameters with the infinitesimal parameter A3 4o for
$3.4.00 is PO: Vi, ., = {0} where Hy,, , is the disconnected group S(Oz x O3), namely,
the group generated by 7" and J.

3.4.1 Let x be an unramified character of F* with y2 # v*!. The irreducible components of
(! @ xv~2) are I, (x ® Star,) and I, (x o det), where I, (x ® Star,) = (Star, &
IS (x))|so4(r) and Ig, (x o det) = (1gr, B I9“2(X))|so,(r)- The local Langlands parameter
of Ig, (x o det) is given by

¢s.4.1a(w, ) = (i (w)|w]"/2, p(w) w] 7?),
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and the Langlands parameter of I, (x ® Stgr,) is given by
¢3.4.1b(w7 .’E) - {(@(w)a QD(U)))LBI (1')7

where ¢ : Wp — C* is the dual character of x : F'’* — C*. The Vogan variety Vi, ,, is
the root space uz with Hy, ,, = T action given by ¢ -z = 51(¢)x. This is equivalent to P1,
and the two orbits in this prehomogenous vector space, Cy and C7, match ¢3.4.1, and ¢3.4.15,
respectively.

3.4.2 Let x be an unramified character with x? # v*!. The irreducible components of I(xv'/?®
X_1V1/2) are Iﬂ2 (X ® StGLz) and Iﬂ2 (X Odet) where Iﬁz (X ® StGL2) = (IGL2 (X) X StGLz ) |SO4(F)
and Ig, (yodet) = (I°"2(x) R 1gr,)|so,(r)- The local Langlands parameter for Ig, (x o det) is

$3.4.20 (W, ) = L(p(w)|w[/2, p(w) " w|/?),

and the Langlands parameter for I, (x ® Star,) is

dasan (1w, (&) = Helw), o)z, ),

where ¢ : Wp — C* is the dual character of x. The Vogan variety V), ,, is the root space
us, with Hy, ,, = T action given by ¢ -2 = B2(t)z. This is equivalent to P1, and the two
orbits in this prehomogenous vector space, Cy and C7, match ¢3 4.0, and ¢3 4.0, respectively.

3.4.3 Let x be an unramified character of F* such that x> = 1. Thus Y is either trivial or 5.
The representation I(xv ® x) has 4 irreducible components:

Xs04(F), J8:(1/2,x ® Star,), J5,(1/2,x ® StaL,), Xso.(r) ® Stso,,

where xso, is the character x composed with the spinor norm of SO4(F'), Stso, is the
Steinberg representation of SO4(F), which is the unique subrepresentation of I5°(y®1), and
Js, (s, x ©StaL,) is the unique quotient of Ig, (v°x ® Star,,) for s > 0. These 4 representations
can also expressed as

Xso,s = (x odetMlar,)|so,, Js,(1/2,x ® StaL,) = (Star, M x o det)|so,(r),
Stso, = (StGLz X StGL2)|SO4(F)7 ng(l/Q,X ® StGLz) = (x o det ®StGL2)|SO4-

The local Langlands parameters of these 4 representations are given, in order, by

$3.4.30(w, ) = H(p(w)|w], p(w)),
s.4.30(w, ) = H(p(w)[w] '/, p(w)w]/*)i5, (),
$3.4.3:(w, ) = f(@(w)|w|1/2 p(w)|w]™ 1/2)“ (@),
$3.4.3a(w, 7) = Hp(w), p(w))eg, (2)i5, ().

Here ¢ : Wgp — C* is the dual character of the quadratic character xy : F* — C*. Let
X343 : Wrp — £SOy be the infinitesimal parameter for any of these Langlands parameters;
thus,

Az.a3(w) = t(p(w)lwl], p(w)).
The moduli space of Langlands parameters with infinitesimal parameter \(3 4.3 is the direct
sum ug Sug, of the root space for the simple roots 81 and 82 equipped with the group action
of T given by t-(x1,x9) := (51 (t)z1, Bs (t)z2). As a prehomogeneous vector space, Vy, , ., = A?
with this Hy, , , = GL7 action is equivalent to P3 for n = 2.
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3.4.2. ABV-packets. Table 3.4.1 presents the ABV-packets for all unipotent representations
of SO, and its pure inner form SOZ7 each as a union of a pure L-packet and its stabilizing
representations.

We now sketch how the calculations in Table 3.4.2 are made; the arguments are very similar
to those in Section 3.5.2 so we will be brief here. The bijection between II} ™ (SO4 /F) and
the six simple perverse sheaves in F‘erf(ué1 &) uBQ) is given by the following table.

C5.4.30 Cs.4.36 Cs.4.3¢ Cs.4.34
Xsou(ry | ZC(1ey 4 5,)
JB1(1/27X®StGL2) ZC(ILC&AL.%)
Jﬂ2(1/27X® StGLz) E(HCSA.SC)
XS04 (F) ® StSO4 IC(]]‘CSA.Sd)
XS03(F) I(Z(DCS.4,3d)

where D is the character of Ay, , , = {£1} corresponding to the pure inner form § € Z'(F,SOy).
To illustrate the calculations that this table summarizes, consider the case ¢34.35. The
component group of ¢(3.4.3) is {£1} and thus the pure L-packet of @3 4.3) has 2 elements:

57 (8O4) = {Stso, (X): Xs03(p) }-

where xgos(py) = 11f x = 1 and x50z () Is the unique unramified quadratic character of SO4(F)
if x # 1. Table 3.4.2 presents the ABV-packet coefficients promised in the Introduction as it
pertains to the Langlands parameter ¢343. From Table 3.4.2 we read off the ABV-packets in
Case (3.4.3); the result appears in Table 3.4.1.

TABLE 3.4.2. ABV-packet coefficients ( , ) for unipotent representations of
SO4 with infinitesimal parameter A3 4.3. The first four rows refer to representa-
tions of SO4(F') while the fifth row refers to a representation of the inner form

SOY(F).
e sou/F) LAy LA [A (A
XS04(F) 1 0 0 0
Jﬁ1(1/27X®StGL2) 0 1 0 0
J62(1/27X®StGL2) 0 0 1 0
Stso, (X) 0 0 0 1
X503 (F) 0 g g g

Properties (LLC), (Open), (Temp) and (Norm) are elementary for SO4(F’) and its pure inner
forms. Proposition (Stable) is interesting for SO4(F) and its pure inner forms.

)
Proposition 3.2. The distributions 6204 (resp. @ZO“) form a basis for the space of invariant
distributions spanned by characters of unipotent irreducible admissible representations m of

SO4(F) (resp. SOY(F)). The distributions 9204 and 6203 are stable.

Proof. Tn all cases except ¢ = ¢3.4.0, I15(SO4(F)) and T14(SOS(F)) are singletons (or empty)
and @204 = O,. To see that these are all stable distributions, we may argue as follows.

In Case 3.4.0, the representations 1594 (y; ®2) are stable because they are standard modules,
stably induced from representations of T'(F').

In Case 3.4.1 we have ©so, (vl /2@xr—1/2) = @IP1 (x®Star,) + @IP1 (xodet)-
Since the distribution ©so, (y,1/26y.,-1/2) 1S stable (by an argument as above) and Orp, (xodet) 18
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stable by hand, 611’1 (xoStar,) 18 also stable. For Case 3.4.2 argue as in Case 3.4.1. In Case 3.4.3
we have

61304(XV®X) = eJm(XV(X)X) + GJPI (1/2,x®StcLy) + @JP2(1/27X®StGL2) + ®Stso4(X)'

Since I394(yrv ® x) is stable (argue as in Case 3.4.0) and Jy(xv @ x), Jp, (1/2, X ® StaL,), and
Jp,(1/2, x®StcL,) are stable (argue as in Case 3.4.1) it follows that Osg;, (y) is stable. Finally,
Xso3(r) I stable because 1gos y is stable. Case ¢ = ¢3.4.0/ is a well known: Iy, , , (SO4(F)) =
{m4, )} where 7y and 7} are the two irreducible representations appearing in the induced
representation 1594 (y, ® 1) and the stable distribution attached to this L-packet is @2?1 =
On, + On;.

3.5. Unipotent representations of PGLs and its pure inner forms. In this section we
find the ABV-packets and ABV-packet coefficients for all unipotent representations of PGLj3
and its pure inner forms.

As in Section 3.3, the category of unipotent representations of PGL3(F') is precisely the
category of unramified principle series representations of PGL3(F’). In this section we partition
the set II(PGL3(F'))unip of unipotent representations of PGL3(F') into L-packets and also
describe the corresponding L-parameters. We do the same for the non-split inner form D* /F*,
where D is a central division algebra of degree 3 over F'. The p-adic group PGL3 has three pure
inner forms but only two inner forms, since H'(F,PGL3) has order 3, while the image of

H'(F,PGL3) — H'(F, Aut(PGL3))

has order 2. The function above is neither injective nor surjective. Let 6,6’ € Z1(F,PGL3)
be representatives for the two non-trivial classes in H'(F,PGL3). Let PGLg,PGLg, be the
inner forms of PGL3 attached to these cocycles; then PGLg = PGLgI as algebraic groups over
F, although [5] # [§'] in H'(F,PGL3). We can take PGLS(F) = D*/F* and PGL] (F) =
(D")*/F*, where D' is the opposite algebra of D.

TABLE 3.5.1. Pure Arthur packets for unipotent representations of PGL3(F)
and its pure inner forms PGLg and PGLg/: each row gives a pure L-packet
for an L-parameter and its stabilizing representations and therefore determines
a pure Arthur packet. Notation is explained below. Cases, indicated in the
left-hand column, gather representations together by infinitesimal parameter.

L-parameter pure L-packet stabilizing parameter of
0] 15" (PGL3 / F) representations Arthur type?

®3.5.0 ‘ Indg?&g;)(h ®Xx2® X7 'x2 ") ‘ unitary xi, x2
D3.5.1a0 I, ((x o det) ® x~?) unitary x
?3.5.1p I, (xStaL, ® x?) unitary x
$3.5.2a I, ((xv'/% o det) ® xv=1/3) no
$3.5.20 Lo, (xv"/®StaL, ® xv™1/?) no
©3.5.3a XPGLs XPGLY(F)> XpGLy (F) | Y€S
®3.5.3b X ® Jo, (v @ v™1/2StaL,) XPGL§(F): XpaLs' () | O
$3.5.3¢ X ® Ja, @ %Star, @ v71) XPGLS(F)» XpaLs' (F) | 1O
$3.5.3d X @ StpGLss XPGL{(F): XpGLY (F) yes
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3.5.1. Langlands correspondence. Let T be the standard maximal torus in PGLj3 and let Bjg
be the standard Borel subgroup of GL3s. We denote the matching positive roots of GLs by
a1 and ay. Let P,, be the standard maximal parabolic subgroup of GLj3 such that the root
space «; is in the Levi of P,,. Since PGL3(F) = GL3(F)/F*, a representation of PGL3(F) is
just a representation of GL3(F') with trivial central character. The cases treated below group
representations together by infinitesimal parameter.

3.5.0 Let 1, x2 are characters of F'* such that Xlxgl, X3x2 and x1X3 are not equal to v and

not equal to v~1. Then the induced representation

GL3(F _ _
Indi 0 (1 @ x2 @ X1 x5 )

is irreducible. Note that this representation has trivial central character and thus can be
viewed as a representation of PGL3(F). We denote this representation of PGL3(F) by

TIPS (y; ® x2). The corresponding Langlands parameter for 1753 (y; @ y2) is given by
¢3_5,0(w,x) = 0 QDQ(U)) 0 S SLg((C),
0 0 pi(w) pa(w)!

where @; : Wg — C* corresponds to x; : F'* — C* under class field theory.
3.5.1 Let x be a character of F* with x3 # v¥1/2 y#3/2 We consider the representation

GL3(F — —

of GL3(F'), which is also viewed as a representation of PGL3(F). This representation has
length 2, and its two irreducible components are I,, (xStcL, ® x2) and I,, (x o det ®@x~2),
which, adapting the notation above, are written as

1555 (xStar,), and IFCE3 (x o det).

Here I SlGLi‘ stands for IndgLL", and a representation of GL3(F') is viewed as a representation
ay

of PGL3(F) if it has trivial central character. The Langlands parameter of I,,, (x o det ®x?2)
is given by

lulV? 0 0
$35.1.0(w, ) = 0 o(w)|w|~1/2 0 € SL3(C),
0 0 o(w)=2

where ¢ : Wr — C* is the dual character of x. The Langlands parameter for I,, (xStgr, ®
x~2) is given by

a0, (22)) = (@lwle e(wd 0= (AT ) estae)
0 0 ‘P(w)72 o(w)
Note that the infinitesimal parameter for these representations is
p(w)|w] /2 0 0
A3.5.1a(w) = 0 o(w)|w|~/2 0
0 0 o(w)=2

3.5.2 Let x be a character of F'* with x® = 1. Consider the representation
GL3(F - _
Inng(g)}g) )(XV2/3 ®xv @ xv®),
which is also viewed as a representation of PGL3(F'). This representation has length 2 and
its two components are

I, (xvY%Star, @ xv™ %) and I, (xv'/% o det @xv~1/3).
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The Langlands parameter of I, (xv'/¢ o det @xv~1/3) is given by

p(w)|w]*/? 0 0
¢3.5.2a(w, ) = 0 o(w)|w|~1/3 0 € SL3(C),
0 0 p(w)|w]| =13

and the Langlands parameter of I, (xv*/%Stqr, ® xv~'/?) is given by

w wl/ T
¢3.5.2b<w,x>:(90< RE e /3)esL3<<C).

3.5.3 Let x be a character of F* with x® = 1. Consider the induced representation

GLs(F _
Inng_(“";) "xv e x ©xv )

of GL3(F') (and also of PGL3(F")). This representation has length 4 and its components are
given by
XPQL3(F)s X ® Jo, (v @ v™1/2St1,),
X®JD¢1 (V1/2StGL2 ®V_1)) X®StPGL3?
where Xpar,(r) = xodet, Jo, (11/2Star, @) is the unique quotient of I,, (11/2Star, @v 1)
and Ju, (v ® v~1/2Stqy, is defined similarly. The local Langlands parameters of these 4
representations are given, in order, by

|w]

—_
m
w2
=
B
a

#3.5.30(w, ) = p(w)

¢3.5.30(w, ) = p(w) <|w| —1/%) € SL3(C),

asaclios) = () (M) estal)
$3.5.34(w, ) = p(w) Sym?(z) € SL3(C),

where ¢ : W — C* is Langlands parameter for the quadratic character x and Sym? is the
symmetric square representation of SLy(C).

This completes the description of the Langlands correspondence for unipotent representations
of PGL3(F).

3.5.2. ABV-packets. Table 3.5.1 presents the L-packets for all unipotent representations of
PGL3(F). Returning to pure L-packets, we only explain the case (3.5.3) since the others proceed
by similar, simpler arguments. Denote the last Langlands parameter in Case (3.5.3) by ¢(3.5.3)a-
This Langlands parameter has component group us so its pure L-packet contains 3 admissible
irreducible representations:

my"e (PGLs /F) = {x ® StpgLs, XPGL3(F)> XpGLg’(F)}7

where Xpaps(p) (resp. XPGLg’(F)) is the character of PGL}(F) (resp. PGLgl (F)) obtained by
composing y with the reduced norm.

Table 3.5.2 presents the ABV-packet coefficients for the Langlands parameter ¢(35.3). From
Table 3.5.2 we read off the ABV-packets in Case (3.5.3); the result appears in Table 3.5.1, where
D (resp. D’) is the character of Ay, , ,, corresponding to the pure inner form 6 (resp. ¢’) in

ZY(F,S0y).
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TABLE 3.5.2. ABV-packet coefficients ( , ) for unipotent representations of
PGL3 and its pure inner forms with infinitesimal parameter A3 53. The first
four rows refer to representations of PGL3(F), while the fifth and sixth rows
are refer to the pure inner forms § and ¢, respectively. Below, we identify §
(resp. ¢’) with the character of Ag, . ,, corresponding to the pure inner form ¢
(resp. &) in Z(F,PGL3). All microlocal fundamental groups are order 3

’ Irreps With inf parameter )\353 H A‘;’?{S,Sa ;};\j’;ﬁb ;L;\,’VS.SC 1;}-;\.[5-3{1
XPGL3(F) 1 0 0 0
X @ Ja, (v @ v~ 2Stqr,) 0 1 0 0
X ® Jo, (¥?Stqr, @ v1) 0 0 1 0
X ® SthL3 0 0 0 1
XPGL(F) 0 0 0 0
XpaLs (F) & & &' J

We now explain the calculations behind Table 3.5.2; as a special case of the techniques of
[CEM™21]; see also |[CFZ]. Let Az5.3 : Wg — SL3(C) be the infinitesimal parameter of ¢35 3q4:

|w| 0 0
wl/?
A3.5.3(W) == ¢3.5.3d (w, (‘ |0 |w|91/2>> =10 ! 0
0 0 |w™

The moduli space of Langlands parameters with infinitesimal parameter A3 5.3 is the direct sum
Us, D Ua, of the root space for the simple roots &; and &s, equipped with the group action of
T given by ¢ - (z1, 22) := (41 ()1, Ao (t)x2).

Vogan’s version of the Langlands correspondence establishes a bijection between simple
objects in the category Pers(us, @ ug,) of f—equivariant perverse sheaves on us, @ ug, and
irreducible admissible representations of PGLj3 and its pure inner forms with infinitesimal
parameter A\(35.3). We have already seen there are six of the latter — the four irreducible
subquotients of Indgi(g’é?) (xv ®x ® ur~—1) together with the characters XPGLS(F) and XpGLs' (F)-
Let us enumerate the corresponding simple objects in Pers(ua, ©ug,). Let C3.5.3, be the trivial
orbit in Vj, . ,,, let C3 5.3, be the T-orbit of Xa,, which is the point in the moduli space for the
Langlands parameter ¢1 for y ® Jo, (v ® v=1/2Star,); let Cs.5.5. be the T-orbit of Xg,, which
is the point in the moduli space for the Langlands parameter ¢y for x ® Jo, (1/1/28‘5(;142 ®@v1).
Finally, let C3.5.34 be the T-orbit of Xa, + Xa,; this orbit of the Langlands parameter ¢3 5.34 for
1 ® Stpar,. The equivariant fundamental groups of these orbits are trivial with the exception
of the open orbit Cj5 534, which has equivariant fundamental group

A¢3.5.3d ::W?(C3-5»37Xd1 + Xdz) = WO(ZT(X(M + Xdz)) = {17037 03}

The bijection between IT5"° (PGL3 /F) and the six simple perverse sheaves in Pers(ua, © ua,)
are given by the following table.

C3.5.3a C3.5.30 C3.5.3¢ C3.5.3d
XPGL3(F) E(lc&s.sa)
X® Jal (V ® V_l/QStGL2> IC(]lC:s.asb)
X® Ja1 (Vl/QStGLz ® V_l) %(103,5.30)
X ® StPGL3 IC(]]'CS.S.3d)
XPGLS(F) IC(Dey 5 54)
XpaLy (F) IC(Dg, , 54)»
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where D (resp. D’) is the local system corresponding to the choice of primitive cube root of
unity § (resp. ¢') appearing in the pure inner form § € Z!(F,PGL3).

Now, for each irreducible admissible m above, and for each Langlands parameter ¢ with
infinitesimal parameter A(3s3), we compute NEwsc, P(m), where P(w) is the corresponding
simple object in Perz(us, & us,). The result is a local system in AG’®:=T¢ (ua, © Ua, )sreg
and this may be viewed as a representation of the equivariant fundamental group of Ascr:g,
which is A’;BV. The results are summarized in Table 3.5.2.

The properties in Theorems 2.2 and 2.14 are elementary for PGL3(F') and its pure inner
forms as is [CFM ™21, Conjecture 1].

4. GEOMETRIC ENDOSCOPY

4.1. Lifting Langlands parameters. Let (G,s,£) be an endoscopic triple for Gy and let
¢ : Wi — G be an unramified Langlands parameter such that s € Siog- The Langlands
parameter ¢ determines, or lifts to, a Langlands parameter £ o ¢ : W}, — LG5, Matching
the cases that appear in our classification of Langlands parameters for G and G4 is a little
complicated, because we have grouped parameters into families based on the geometry created
by the corresponding infinitesimal parameters. Consequently, it happens that different members
of these families may lift to different families for G5. To illustrate this phenomenon, here we
give the details for one of the six endoscopic groups for GG3. Together with all other cases, this
information is summarized in Table 4.1.2.

(Ag) G = PGL?,, s = m(9§,93)

(0) The Langlands parameter ¢35 lifts to ¢q iff o1 (Fr), g2 (Fr), @1 (Fr)pa(Fr) ¢ {g*1}; lifts
to ¢1q iff one of ¢1(Fr), po(Fr), ¢1(Fr)ps(Fr) is in {¢*'}; and lifts to ¢s, iff two of
1 (FY), (), 1 (Fr) oo (Fr) are in {g=1}.

(1) The Langlands parameter ¢35.14 (resp. ¢35.14) lifts to ¢a, (resp. oop) iff o(Fr) ¢
{=q*172,¢%32} 5 ua (vesp. oup) iff p(Fr) € {—¢*'/%}; ¢7a (resp. ¢m) iff (Fr) €
{qi?’/Q}.

(2) The Langlands parameter ¢3 5.2, (resp. ¢s.5.9p) lifts to ¢szq (resp. dsp).

(3) The Langlands parameter ¢3 53, (resp. ¢35, $3.53¢c, ¢3.5.34) lifts to dea (vesp. @ep,
deb, dep) I (Fr) # 1; and lifts to ¢s, (resp. dsp, dse, Psa) iff @(Fr) = 1.

If we turn the problem of lifting parameters on its head, our classification of scheme for Lang-
lands parameters is more illuminating: instead of lifting parameters from endoscopic groups,
begin with a Langlands parameter for G2 and find all endoscopic triples (G, s, ) such that the
Langlands parameter factors through ¢ : “G' — “G5. This information appears in Table 4.1.1.

4.2. Regular conormal vectors and Arthur parameters. Let (G,s,£) be an endoscopic
triple for Go and let ¢ : W; — LG be an unramified Langlands parameter. Let A be the
infinitesimal parameter for ¢; then £ o A is the infinitesimal parameter for £ o ¢. Now consider
the map ¢ : LG — LG5 on dual groups and the induced homomorphism G — G, also denoted
by & below. Pass to tangent spaces d€ : g — g and restricted to Vogan varieties to define the
embedding
d§|V)\ VA — ‘/50/\
such that the subvariety V) is the fixed-point set of the (Vgo A)® = Vi. This induces
€| 7 (vy) : T*(Va) = T7 (Veor)

such that (T*(Vgonr))® = T*(Vy); recal that we may view T*(V}) as a subvariety of g. Likewise,
this induces a map of conormal bundles

d§|A/\ :A)\ — AEO)\
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TABLE 4.1.1. Langlands parameters and their associated minimal endoscopic
groups. In the column labeled "minimal endoscopic group(s)" we indicate, for
each Langlands parameter ¢ of G, the minimal endoscopic groups G such that
the parameter factors ¢ through ¢ : “G — “G5. The column labeled "Arthur
type" gives necessary and sufficient conditions for ¢ to be of Arthur type.

Langlands | Minimal Arthur Component
Parameter | Endoscopic Type groups
1 Group(s) | Parameter | Ay A} | dim(¢)
y bo \ T la1=a;=0] 1 1 | 0 |
D14 T a=1/2 1 1 0
d1p GLJ? a=1/2 1 1 1
P2a T a=1/2 1 1 0
Pop GLJ}' a=1/2 1 1 1
®3.a T no 1 1 0
b3 GLJ no 1 1 2
D4a T yes 1 (02) 0
Pap GLJ yes 1 (02) 1
Gac GLJ? yes 1 (02) 1
Pad SO4 yes (02)  (02) 2
®5a T no 1 1 0
Psb GL3J? 1o 1 1 2
¢6a T yes 1 <93> 0
(b(jb GL;l no 1 <93> 1
¢60 GrL’QY1 no 1 <93> 1
Pod PGL3 yes (03)  (0s) 2
D7a T yes 1 1 0
(2571, GrL’QY1 no 1 1 1
O7e GLJ? no 1 1 1
P7d Go yes 1 1 2
Dsa T yes 1 S3 0
bsb GLJ yes 1 (02) 2
Pse GLJ? yes 1 (02) 3
Gsd S04, PGL3 yes S3 S3 4

such that Ay = (Agon)’; again, we may view Ay as a subvariety of g. Now let 4 (resp. Z¢og)
be the point in the moduli space V) (resp. Vioy) for ¢ : Wi — LG (resp. for £o¢: Wj — LGy)
and let Cy (resp. Ceog) be its Hy-orbit (resp. Heon-orbit). Now d€|a, restricts to an immersion

d€|as e,  Brcy = Aeox Ceo- (13)

Now consider the restriction

d€lay o
te}
Axc, ——— AcornCeoy

[

ASTes )‘%sz
ACy



TOWARD THE ENDOSCOPIC CLASSIFICATION OF UNIPOTENT REPRESENTATIONS OF p-ADIC G3 43

TABLE 4.1.2. Summary of possible lifts for members of each family of Lang-
lands parameters. The leftmost column gives endoscopic groups G for Gy. The
column "Endoscopic Langlands parameters" refers to Sections 3.2 through 3.4.
The column "Arthur-type" indicates those £-conormal parameters that, when
unitary, are parameters of Arthur type; see Definition 6 for this notion. The
lifts appearing in the column "other regular" indicates all other £-conormal pa-
rameters. In these last two cases, the information in these two columns refers
to the classification of unramified Langlands parameters for G2 appearing in
Section 1.2. Finally, the column "irregular lifts" indicates all remaining lifts.

s-regular lifts
Endoscopic
Endoscopic Langlands | Arthur Other
group parameters | type regular | Irregular lifts
(T)
$3.2.0 bo ®1as P2a; P3a; Pdar P5as Péas P7a, Psa
(A43)
$3.3.0 ®o ®1as P2, P3a; Pdas P5as Péas P7a, Psa
$3.3.1a P14 G50 | Paa, Pras Psa
$3.3.1b b1p 56 | Pac, Pre, Pac
(A
$3.3.0 b0 ®1as P2a; P3a; Pdas Psas Péas P7a; Psa
$3.3.1a $24 ®3a | Pias Péas Pras Psa
$3.3.1b b2p ®3b | Pabs Pob, 115 Psb
(D2)
$3.4.0 bo ®1as P2a; P3a, Pdas P5as Péas P7a, Psa
$3.4.1a P1a $5a | P7a
$3.4.1p b1p s | Pre
$3.4.24 $24 $3a | P6as Pra
©3.4.2p b2p ®3b | Pebs P1b
$3.4.3a $1a; Psa
©3.4.3p Gap; Psb
$3.4.3¢ Gac, P8c
$3.4.3d bad, Psd
(42)
$3.5.0 bo ®1a; Psa
$3.5.1a $24 b4a; P7a
©3.5.1p b2p Gabs P71
$3.5.2a $3a
©3.5.2p ®3p
©3.5.3a ®6a; Psa
©3.5.3b Peb | Psb
©3.5.3¢ Pec | Psb
©3.5.3d ®6d; Psd
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Definition 6. Let (G, s,£) be an endoscopic triple for Go and let ¢ : W}, — LG be an unramified
Langlands parameter. Let us say that a Langlands parameter ¢ : Wy — LG is ¢é-conormal, if
the image of d§|ysres is contained in ALY Ceoy- I ¢ is &-conormal the map

Co B o

dg
induces a group homomorphism of equivariant fundamental groups, henceforth denoted by

ABV ABV
dey: A — ALY,

wrew - A\STES sreg
aE, P ANE, 7 Meoxceos

Proposition 4.1. Let (G,s,§) be an endoscopic triple for Go and let ¢ : Wi — LG be an
unramified Langlands parameter. If ¢ is of Arthur type then ¢ is &-conormal.

Proof. Let v : Wp — LG be the Arthur parameter such that ¢(w,z) = ¥(w,x,dy,). Set
z:=dy(1,e,1) and y:=dv(1,1, f). Then by [CFM'21, Prop. 6.1.1] we have (z,y) is a strongly
regular conormal vector for ¢. Consider £ o1 : Wj: — LGs. Then again by [CFM*21, Prop.
6.1.1] we have dé(z,y) = (d(€ov)(1,e,1),d(E0)(1,1, f)) is a strongly regular conormal vector
for£og . O

In Table 4.1.2 we present a complete list of all endoscopic triples (G, s,£) and all unramified
Langlands parameters ¢ : W}, — £G4 for which ¢ is £-conormal. We now explain this table. The
left-hand column of Table 4.1.2 lists the endoscopic groups G for G2 as explained in Section 3.1.
Then, for each such G, we list the families of endoscopic Langlands parameters ¢ : Wy — LG
as they appeared in Sections 3.2 through 3.4. In Section 4.1 we saw that for each ¢ in these
families, there are multiple Langlands parameters for G5 (F') to which ¢ may lift, depending on
the properties of ¢. Each row of Table 4.1.2 lists the lifts £o¢ that arise as ¢ ranges through each
family, partially ordered left to right along rows by the relative dimension dim(& o ¢) — dim(¢);
note that if this relative dimension is 0 then ¢ is trivially £-conormal.

4.3. Statement of the Trace/fixed-point formula.

Theorem 4.2. Let (G, s,£) be an endoscopic triple for Go and let ¢ : Wi — LG be an unramified
Langlands parameter for G. If ¢ is £-conormal then

traces (NEvs¢oq[dim(€ o ¢)]P) = traces (NEvsy[dim(¢)] resP)
for every P € Pery,,, (Veor)-

The proof of Theorem 4.2 will occupy the rest of this Section, so we explain the strategy
here. We work through the list of endoscopic triples (G, s, &) for G2 and, in each case, we recall
that classification of Langlands parameters ¢ : W5 — LG in terms of infinitesimal parameters
in Sections 3.2 through 3.4. We identify those Langlands parameters ¢ that are &-conormal,
expanding on the information presented in Table 4.1.2. We then recall the classification of
Vogan varieties Heon X Veoxr — Vion in terms of prehomogeneous vector spaces H x V. — V
from Section 1.2 and we observe that same list of five prehomogeneous vector spaces capture all
instances of the Vogan varieties Hy x V) — V). We further show that the embeddings

dg'\/}\ : V)\ — ‘/Eo)\v
explained at the beginning of Section 4.2, all take the form
VeCvV
where V' is one of these five prehomogeneous vector spaces and s € H has finite order (hence
semisimple). We are then able to match L-parameters ¢ with H*-orbits C’ C V* and identify

those that are é-conormal with the corresponding property of the H*-orbit C’; we refer to these
orbits as V-conormal. This is the genesis of the notion of £-conormal, in fact. We then prove
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the theorem for these prehomogeneous vector spaces in the form of Proposition 4.4, for all
V-conormal orbits C’ C V5.

4.4. Prehomogeneous vector subspaces.

Lemma 4.3. Let H x V. — V be one of the five prehomogenous vector spaces appearing
in Proposition 1.2; observe that H is reductive in these cases. For semisimple s € H, set
H:=Zy(s) and Ve :={x € V | s(x) = x}. Then H* x V* — V* be is also a prehomogeneous
vector space and again one of the five prehomogenous vector spaces appearing in Proposition 1.2.

Proof. When V = V* and H = H* this is a tautology, whereas V = V* and H # H® only
occurs for PO.

Up to the natural notion of equivalence, the possibilities for proper fix-point prehomogenous
vector subspaces are the following.

P1 The prehomogeneous vector space V = Al with H = GLj-action (scalar multiplication) has

only one proper fixed-point prehomogeneous vector subspace:
(i) V* = {0} with H® = GL; (this is P0), with, s = —1.

P2 The prehomogeneous vector space V = A? with H = GLy-action given by twisted matrix
multiplication h.x = det(h)™ hx also has the following proper fixed-point prehomogeneous
vector subspaces:

(i) V* = {0} with H® = GLy or GL? (this is P0), wolog s = diag(s;, s2) where s; and s,
are primitive n-th roots of unity.;

(ii) V* = {(21,0) | 21} and H* = GL7 (this is equivalent to P1), wolog s = diag(1, s2) where
S9 is a primitive n-th root of unity.

P3 The prehomogeneous vector space V = A? with H = GL3-action given by (ty,t).(x1,22) =
(t121, t1thx2), for positive integer n, the following proper fixed-point prehomogeneous vector
subspaces are possible:

(i) V* ={(0,0)} and H®* = H (this is P0) for s = (—1, s2) where s3 is not an n-th root of

unity;

(ii) V® = {(21,0) | z1} and H® = H (this is P1) fors = (1, s3) where s is not an n-th root
of unity;

(i) V* = {(0,x2) | xo} and H® = H (this is P1) s = (-1, s2) where s is an n-th root of
unity.

P4 The prehomogeneous vector space V = A* with H = GLy and action det™ @ Sym?® has the
following proper fixed-point prehomogeneous vector subspaces, up to isomorphism:
(i) V* ={(0,0,0,0)} and H* = GLg or GL? (this is P0), wolog s = diag(—1, —1);
(i) V* = {(21,0,0,0) | 1} and H® = GL? (this is equivalent to P1), wolog s = diag(—1,1);
V* ={(0,22,0,0) | 2o} and H® = GL? (this is equivalent to P1) for s = diag(1,1);
V* = {(21,0,23,0) | 1,23} and H® = GL? (this is P3 for n = 2) and s = diag(—1,1);
Ve = {(21,0,0,24) | 1,24} and H® = GL3 (this is P3 for n = 3) and s = diag(63, 63).
O

4.5. V-conormal. Let H x V' — V be one of the prehomogeneous vector spaces appearing in
Proposition 1.2 and let H® x V¥ — V* be one of the subspaces appearing in Lemma 4.3, for
semisimple s € H. Then T*(V)* = T*(V*®), where H acts on T*(V) by s (z,y):=(s-z,5-y).
Recall that A = {(z,y) € T*(V) | [,y] = 0}; then A® = {(2',y') € T*(V?) | [«/,y'] = 0}.

Now let C' C V* be an H*-orbit. The H-orbit of C’, denoted by H - C' C V and sometimes
called the saturation of C’, is a single H-orbit, denoted below by C. The intersection C*
of C' with V* contains C' but may contain other H®-orbits: we write C* = U;C.. Then,
(Ac)® = Ui(A®)cr Passing to the regular part of the conormal varieties we find that it can
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happen that (A5®)® and U;(A, )% are not equal. Of course, this is essentially the same
phenomenon discussed in Section 4.2. Definition 6 now takes this form.

Definition 7. With notation as above, let us say that an H*®-orbit C’ C V* is V-conormal
if (AL,)™°8 C (AZ®)®, where the H-orbit C' C V is the saturation of C’. In this case, this
inclusion induces a map of equivariant fundamental groups Ag, — Ag".

Whenever V= V* and H = H? then we trivially have that every orbit is V-conormal. For
those cases under consideration in this paper where V= V* and H # H® the same remains
true. We note that this only occurs for PO.

From the cases of prehomogenous vector spaces V and proper subspaces V*° appearing in
Lemma 4.3, only the following H?®-orbits C' C V* are V-conormal:

(1) Case P2(ii). The closed orbit C{j and the open orbit C] in V* are V-conormal. We note that
the saturation of the closed H®-orbit C{, in V* is the closed H-orbit Cj in V; the saturation
of the open H*-orbit Cf in V* is the H-orbit Cy in V, which is not open.

(2) Case P4(iv). Every H*®-orbit C' in V*® is V-conormal. These orbits are denoted by C{, C1,
Ch and CY, where C{ is closed and CY is open and where C] is the H*®-orbit of (1,0,0,0)
and C} is the H*®-orbit of (0,0,1,0). The saturation of the closed H®-orbit C} is the closed
H-orbit Cy, the saturation of C] is Cy, the saturation of C is Cy and the saturation of the
open H?-orbit Cf% is the open H-orbit Cs.

(3) Case P4(v). Ounly two of the four H*-orbits C’ in V* are V-conormal. Let the H®-orbits
in V* be denoted by Cj, C7, Cy and Cj, where Cj is closed and Cf% is open and where C7 is
the H*-orbit of (1,0,0,0) while C} is the H*®-orbit of (0,0,0,1). Then the saturation of the
closed H?®-orbit C{ is the closed H-orbit Cp, the saturation of Cf is C1, the saturation of C}
is C; again, and the saturation of the open H®-orbit C% is the open H-orbit Cs. Ounly C}
and Cj are V-conormal.

4.6. Restriction. Let (G, s,£) be an endscopic triple for Gy over F. Let A be an infinitesimal
parameter for G. To prove Theorem 4.2 we will calculate the equivariant restriction functor

res : Dy, (Veor) = Da, (V)

on simple objects in the abelian category Perg (Veox). As we will see, the restriction resP of an
equivariant perverse sheaf is not necessarily perverse. To address this issue, we replace Perg (V)
with the full subcategory Pery; (Vy) of Dy (V) generated by shifts P[n] of equivariant perverse
sheaves. In this section we will see that res defines

res : Per}%ok(VgoA) — Per}h(V,\)

We use this fact to replace restriction along d§ : Vi — Vion with restriction along V¢ — V,
where H x V' — V is one of the five prehomogeneous vector spaces from Proposition 1.2 and
s € H is semisimple. The functor

res : Pery; (V) — Per}. (V?®)

on simple objects is given in Table 4.6.1 for the three prehomogeneous vector spaces appearing
semisimple s € H appearing in Section 4.5.
In Table 4.6.1 we find four indecomposable perverse sheaves, given here.

e On P3 (for n = 2) we define Fy = leo,uc,uc, [1] which is cohomologically equivalent to a
complex
= 0= (I 0 1) — 1,
and hence sits in the exact sequence
0—IC(1lg,) — F2 = IC(1e,) @ IC(1e,) — O,

which we use to compute the functor Ev on these perverse sheaves in Table 4.7.2.
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TABLE 4.6.1. Restrictions of Standard and Simple Perverse Sheaves

Case Standard Restriction || Perverse Restriction
Sheaf Sheaf
P2(ii)  1g, ¥er IC(1c,) IC(1cy)
g, ley IC(1e,) ZC(lgy[l]
P4(ZU) ]]'Co ]]-C(’) IC(]]-CO) IC(]]-C(’J)
lc, ley IC(le,) IC(1ey)[1]
1c, ey IC(le,) F2[2] @ ZC(1gy)[1]
e, gy IC(1e,) IC(1gy)[2]
0cy Loy @ pcoy || ZC(ocs)  Fs[2] ® IC(1cy)[2] ® IC(pey) (2]
€0y pcy IC(ecy) IC(pcy)(2]
P4(1}) ]ICO ]106 IC(]lCO) I(Z(]lcé)
lc, lo; @ 1cy || ZC(1e,)  Fall]
1c, 0 IC(1c,) Fal2] @ IC(1cy)[1]
1c, ley IC(1e,) IC(1gy)[2]
ocs pcy ® pey | I(ecs)  IC(pcy)[2] & IC(pEy ) (2] & IC(1cy)[2]
ECy ]lcé IC(ECS) Fs [2]

e On P3 (for n = 2) we define F3 = 1¢,uc, [2] which is cohomologically equivalent to a complex
= 0= 15 = 15— 0
and hence sits in the exact sequence
0—ZC(1¢g,) = F3 = IC(1¢,) — 0,

which we use to compute the functor Ev on these perverse sheaves in Table 4.7.2.
e On P3 (for n = 2) we define Fy = lo,uc,uc, [1] which is cohomologically equivalent to a
complex

—)0—)(1072@]].071)—)]100
and hence sits in the exact sequence

0—>IC(1¢g,) = Fa = IC(1ey) ®IC(1e,) — 0,

which we use to compute the functor Ev on these perverse sheaves in Table 4.7.3.
e On P3 (for n = 2) we define F5 = 1, which is cohomologically equivalent to a complex

1512] = (Ig; ® 1) [A] = 1e,[0]
and hence sits in the exact sequence
0— ]:4 — .7:5 —)E(]lc3) — 0,
which we use to compute the functor Ev on these perverse sheaves in Table 4.7.3.
4.7. Proof of Theorem 4.2. Let H x V — V be one of the prehomogeneous vector spaces
appearing in Proposition 1.2. The result is immediate if V = V*® and H = H? or in the case
PO so we let H® x V® — V* be one of the proper prehomogeneous vector spaces appearing

in Lemma 4.3. Let C' be an H*-orbit in V* and let C C V be the saturation of C’. In
Proposition 4.4 we show that if C’ is V-conormal then the outside of the following diagram
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commutes.
Du(V) NEsc [dim C] (Asrcg
w
res Asreg
Dy (V*) NEsc/ [dim C'] Dy-(( s ysres)

It is important to note that the square in this diagram does not commute.

Proposition 4.4. Let H x V. — V be one of the prehomogeneous vector spaces appearing in
Proposition 1.2 and let H® x V' — V* be one of the prehomogeneous vector spaces appearing in
Lemma 4.3. Let C' be an H®-orbit in V*. If C' is V-conormal then

traces (NEvsc[dim C] P) = traces (NEvscr [dim C']res P

VS) ) (14)

for all equivariant perverse sheaves P on V', where C C V is the saturation of C'.

Proof. We prove this by verifying (14) by calculating the left- and right-hand sides of (14)

independently, in each of the three cases appearing in Section 4.5.

(1) Case P2(ii). The main calculations are summarized by the Table 4.7.1. The calculations
are completed by comparing trace; of the sheaves in the final two columns. In this case these
are always 1. We note that for each C/ the saturation is Cj.

TABLE 4.7.1. Summary of Calculations for Case P2(ii)

P res P C" NEwsc[dimC] P NEwsc/[dim C'] res P
IC(le,) IC(1gy) G Tyzee [0 Ly [0
C1 OAsrcg [0] 0 Amg [0]
IC(1c,) ZC(1gy)[l] Cp Tpzes 0] 1 Am <0]
1 ]lAmg 2] ]lAm% 2]

(2) Case P4(iv). This is the fixed-point prehomogeneous vector subspace H® x V* — V* for
s = diag(—1,1) € GLy and H = GLs acting on V = A* by det ' @ Sym?®; then H® = GL?
and V¢ = A? with action equivalent to P3 in the case n = 2. Recall that we write C}, for the
trivial H®-orbit, C] for the H*-orbit of (1,0,0,0) € V*, C} for the H*-orbit of (0,0,1,0) € V¢
and Cf% for the open H®-orbit in V*. The equivariant fundamental group of each H*®-orbit is
trivial except Acé = 52; let p be the non-trivial quadratic character of this group and let pcy
be the corresponding local system on Cj.

The main calculations are summarized by the Table 4.7.2. The calculations are completed
by comparing traces of the sheaves in the final two columns and accounting for shifts. Because
the image of s in A" is order 2 we have trace; p = 0, tracese = —1, trace; p = —1 and
traces 2 = —1. We note that for each C! the saturation is C;.

(3) Case P4(v). The fixed-point prehomogenous space H* x V* — V* is equivalent to P3 in
the case n = 3. Without loss of generality, we take s = diag(3,63). Recall that in Case
P4(v) there are only two H®-orbits C' C V* that are V-conormal: the open orbit C{j and the
closed orbit Cj.

The main calculations are summarized by Table 4.7.3. The calculations are completed
by comparing traces; of the sheaves in the final two columns and accounting for shifts.
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TABLE 4.7.2. Summary of Calculations for Case P4(iv). In this table we write
¥ : {1,602} — C* for the character generally denoted in this paper by 5, defined

by 9(62) = .
P res P C’" NBsc[dimC] P NBEwsc[dim C'] res P

C(1cy) IC(1cy) Ch Lyzes[0) Lyee [0

o 0 0

cy 0 0

cl 0 0
IC(1c,) IC(1ey)[1] Co oaze[0] 0

1 Lages[2] Lpsree (2]

oy 0 0

ol 0 0
IC(1c,) Fal2] © ZC(1cy)[1] Co 0 Ly (2] @ Taee[l]

O O] Lyzee[3

& Lages[3] 1 pzree (3]

oy 0 0
IC(1c,) IC(1¢y)[2] Co 0 0

%) 0 0

cy 0 0

Cs Lpgres[4] Lyzree[4]
IC(oc,) (FsDIC(1cy) ®IC(pcy))2] Co 0 L perex[2] @ 0 yeres [2]

c 0 1 Asrzg BEY) Asrzg 3]

Cy Opgzes[3] 19/\“65[ ]

Cé QAireg [4] ]IASC'ff’g[ ] @ Q_9A‘§reg|: ]
IC(ecy) IC(pcy)[2] ch eazee0) J Amg[ ]

c hmg 2] ﬂAmg 3]

Cs 19/\”6@ 3] 19A“eg 3]

Cs enges[4] 19/\“6g [4]

Because the image of s in AZ" has order 3 (or order 1) we have traces 92 = 1, tracese = 1,

traces 0 = 03+ 03 = —1 and trace, p® p* = 03 + 03 =

—1. Note that saturation of Cf and C}

are both C7, these do not satisfy the hypotheses, and that these cases do not always satisfy

(14).

d

4.8. Geometric lifting of stable distributions. From Section 3, recall Definition 5:

0% :=e(6) Y. trace, (NBwsy[dim(¢)]P(r)[~ dim(m)]) O,

re®v(Ge(F))
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TABLE 4.7.3. Summary of Calculations for Case P4(v). In this table we write
91 {1,05,03} — C* for the character generally denoted in this paper by 93,
defined by 9(03) = 03.

P res P C' NBwsc[dimC] P NEvscr [dim C'] res P
IC(1¢,) IC(1ey) (o4 Lagez[0] ﬂAggg [0]
c 0 0
cl 0 0
cl 0 0
(1) Fall] Co oages (0] Lazges (1]
& Lpges(2] Lazes[2]
G Lygmf2) Lperss[2
o 0 0
IC(1c,) Ful2] © IC(1cy)[1] o 0 Tazzes (2] © D[]
O Oyl L= (3
& Opgee (2] 1 peres(3]
o 0 0
IC(1c,) IC(1cy)[2] Co 0 0
ol 0 0
oy 0 0
Gy Lyl Liel4
IC(ec,) (ZC(Ley) ®IC(Vcy) & IC(VE))I2] Cp 0 Lyzres[2] © pcrex (2] © Ofore[2]
c 0 O peres [3] B 02 e [3]
cl oy
cy 0 Dpees[3] © Vo [3]
Ch onnesld] e 4@ 93l
LC(ecs) F5[2] Co engee[0] Lzzes (2]
& Lyges[2] Lazges (3]
Cy Lpges[2] Lazzes 3]
G epuold Luel4

where (G, s, ) is an endoscopic triple for G5 and 6 € Z1(G, F) is a pure inner form of G. Recall
also that this distribution can be written in the form

05 =e(0) Y. (-pim@-dmtg e,
rell}™ (Go(F))

Remark 4.5. If the Langlands parameter ¢ : Wj, — LG is not relevant to G(F), in the sense of

5
[Bor79], then @Gi may be trivial; for example, 91;?}{? = 0 for non-trivial §. On the other hand,

@gi can be non-trivial even when ¢ : W, — LG is not relevant to G(F); for example, although

S5
?3.5.34 18 not relevant to PGLg for non-trivial ¢, GPGrLB s = e(6)0

3.5 00:8 which is non-trivial.
J.0.0a

XpaLg(r)’
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Definition 8. Let (G, s,¢) be an endoscopic triple for Gy. Let ¢ : W}, — LG be an unramified
Langlands parameter. We define
Lift g 5.¢) @g = Z traces (NEvsy [dim(¢)] res P(7)[— dim(7)]) O,
TEMLDY (Ga(F))
where res : Dz__(¢og)(Veor) = Dz (¢)(Va) is the equivariant functor defined by res 7' = Fly,.
2

If the context make it clear what the endoscopic triple is, we will sometimes use the abbreviated
notation Lift&?> for Lift( 5,¢)- Let d € ZY(F,G) be a pure inner form of G. Then (G, 1,id) is an
endoscopic triple for G® over F and, extending the definition above,

Litt 05 :=e(6) > trace; (NEwsy[dim(¢)] res P(r)[— dim(r)]) O
mellioy (GO (F))
Conjecture 1. Let (G, s, &) be an endoscopic triple for G5 and let ¢ : W5 — LG be a unramified
Langlands parameter that is {-conormal. The Langlands-Shelstad transfer of @g from G(F)

to Ga(F) is 9%@3' Now let § € Z1(F,G) be a pure inner form for G over F and suppose

¢ : Wk — LG is also relevant to G°(F). Then the Jacquet-Langlands transfer of @g from G(F)
to G3(F) is e(6)05"

Theorem 4.6. Let (G, s,£) be an endoscopic triple for Ga. Let ¢ : Wy — G be a unramified
Langlands parameter that is £-conormal. Then

e G G _
Llft(G,s,{) C"‘)¢ = @£O¢7S'
Let 6 € ZY(F,G) be a pure inner form of G and suppose also that ¢ is relevant to G°. Then
Rt 5
Liftg 0F = ()05 .

Proof. Theorem 4.2, we have

traces (NEvs, [dim(¢)] P) = traces (NEvsgog[dim(§ o ¢)]resP), (15)
for every simple object P in PerZGA(go/\)(Vgo,\). Thus,
Lift g 5.¢) @g = > traces (NEvsy[dim(¢)]res P(m)[— dim(7)]) O
WGHQ?Z;(GQ(F))
= > traces (NEvsgop[dim(€ o ¢)]P(m)[— dim(m)]) O
TEMLL) (G2 (F))
= Ogop s
Directly from the definitions we see
Liftg5 @g = e(9) Zwen’g“};(Gé(F)) trace; (NEvsg[dim(¢)] res P(m)[— dim(7)]) O,
= e(d) ZWEH;\E;(GWF)) trace; (NBvsg[dim(¢)] P(w)[— dim(7)]) O
= e(6)0§. O

Definition 9. Let ¢ : W}, — LG5 be an unramified Langlands parameter for Go(F). If s € S(/;BV
then ¢ = £ o ¢* for an endoscopic triple (G, s,£) and a Langlands parameter ¢° : W, — LG, If
¢ has the property that ¢° is {-conormal, we say that ¢ is s-conormal. If ¢ is of Arthur type
then ¢ is s-conormal for every s € S,™.

Theorem 4.7. Let ¢ : Wy — LGy be an unramified Langlands parameter that is s-conormal
for every s € SZ;BV. If  is any unipotent representation of Go(F') then the distribution character

O, may be expressed as a linear combination of the distributions Lift(GGQVS’E) @gs, letting ¢ range
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over Langlands parameters with the same infinitesimal parameter as w and letting s range over
S, And if H‘;BV(GQ(F)) — AGY is a bijection then,

_ dim(¢%)—dim(r) (5> T) . G ABV
O = ) (-ptmienman )m Lift ¢ 5.¢) Oge v € I (G2 (F)),
(Gs.6)

where the sum is taken over equivalence classes of endoscopic triples (G, s,£) with s € S;;BV and
where we identify s with its image under S(’;BV — A;BV in the calculation of Z,(s).

Proof. Distribution characters for equivalence classes of irreducible admissible representations
of G2(F) are linearly independent by [BZ76]. For each unramified Langlands parameter ¢
for G2(F'), the number of equivalence classes of endoscopic triples for (G, s,§) for Go(F) with
s € S,” is equal to the number of irreducible representations of Ag™. This makes it possible

to determine the characters (s,7) appearing in the sum Q4 , = > _(—1)4m@)—dimm (5 =) .
The rest of the theorem is a direct consequence of (Basis). O
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